Модификаторы трения в моторном масле


Модификаторы трения: bmwservice

        Практически все, что доступно к приобретению и испытанию в области эксплуатации автомобиля, я стараюсь испытывать и исследовать практически с момента появления таких технологий в свободной продаже. Более того, достаточно долгое время, в блоге даже висело объявление по поводу бесплатного испытания любых препаратов (прежде всего - смазочных). Через какое-то время, в практике обращений сформировались устойчивые тенденции в классификации предложенных методик. Основные (но не все) предложения по испытаниям касаются поверхностно-модифицирующих (например, ГМТ-составов - "микрошлифовка"), металлоплакирующих ("мягкие" металлы, буквально втираемые контактным трением в поверхность), а также препаратов на основе довольно распространенных на рынке хлорорганических соединений. Предложений много, гораздо хуже дело обстоит с информированием потенциальных покупателей.

Дело в том, что со стороны практически любого производителя по отношению к потребителю, так или иначе наблюдается некоторое лукавство, в виде своеобразно выстроенной линии обороны: "все уже давно испытано и работает, вот же картинки, нарисованные нашим художником". Объяснение этому также находится довольно быстро,

так как со своей стороны отчетливо понимаешь, что "натурное" испытание препарата такого рода требует не только много времени, немалых финансов, но и мало-мальски объективной методики. Для того, например, чтобы получить вот такие результаты, потребовалось каких-то три года практической эксплуатации "на результат". Существует хотя бы один производитель чего-либо, опубликовавший что-то аналогичное, хотя бы лабораторное на "живых" деталях двигателя?! Буду рад с ними ознакомиться. Поиском находятся только какие-то пластинки металла (в т.ч. меди), испытанные на все что угодно, включая (ужас какой) коррозию! В двигателе! Не путайте с фреттингом, который действительно возможен.

Лишь немногие из инноваторов "чего-то там" могут себе позволить (и позволяют) худо-бедно откатывать (и откатывают) лабораторные циклы. Но тут же возникает закономерный вопрос: какое отношение имеет постоянно молотящий, в течение сотен часов на номинальных оборотах, какой-нибудь тихоходный "лабораторный" "ДагДизель", залитый маслом типа М8, к реальной эксплуатации современного автомобиля?! Куда умнее было бы найти подубитый жигуленок и сделать пускай и "нелабораторный", но более приближенный к реальности эксперимент. Кстати, опять же - какого рода?  На формирование бесконечного ресурса, или на "оживление" мотора любого рода?

Давно прошли времена многолетних и многомиллионных (по бюджету и километражу) романтичных испытаний-пробегов, которые были характерны для середины XX века. Что же сейчас даст "частный случай с жигуленком" для формирования системных продаж? Специфика выбора автомобиля "на попробовать" должна учитывать целый ряд особенностей, от конструктивных до эксплуатационных. Потребляющие масло в равном объеме 20-летние "Жигули" и 5-летний BMW - совсем не одно и то же, несмотря на схожесть, причины там совершенно различны. Любой положительный эффект от применения должен рассматриваться, скорее, как ожидаемо не универсальный, нежели подходящий "по аналогии" к любому двигателю. С другой стороны, что даст честный и объективный "миллионный" пробег на стенде или тот же пробег по реальным дорогам, но "без пробок"?

Многим ранее, в материалах по маслу я уже публиковал несколько подобных испытаний, проведенных, что называется, "по всей строгости". Результаты там были ожидаемые - двигатель едва изношен. Казалось бы, после миллиона км и износ минимален, едва вообще заметен, почему же тогда аналогичные примеры из "обычной" практики являются единичными и преподносятся общественности едва ли ни как событие мирового масштаба в жизни того или иного бренда?

Это же должно быть обычной практикой! Если там пройден миллион вообще без видимого износа, то в реальной жизни, ожидаем хотя бы столько же до капремонта - какие проблемы-то?! Но обычна такая практика лишь для коммерческой техники: примеров тому полно, но как там это совершенно обычно, то даже не заслуживает обсуждения. Почти каждый "грузовик" без капремонта легко отхаживает 1-2 млн км и говорить про это нечего, в то же время, едва дожившая до такого пробега легковушка, становится воистину событием мирового масштаба. Причины этого феномена уже были неоднократно озвучены и обсуждены. Не буду повторяться.

Сейчас же акцент я хотел бы поставить на особенности предполагаемых "испытательных методик", нежели на ресурс. Самые лучшие "теоретические испытания" с большим бюджетом будут, по сути, повторять стендовые многомесячные пробеги на обычном моторном масле, результаты которых известны вот уж как лет тридцать минимум и результаты эти гласят, что используя обычное моторное масло (ОММ), износ вообще получить практически невозможно.

И что же, по-сути, призывает делать "прогрессивная общественность" любого производителя любой "нестандартной" присадки? А вот что: "испытайте вашу присадку "на стенде", где любое моторное масло совсем не показывает практического износа, а пока идут эти длительные испытания, мы будем выбирать лучшее моторное масло?!" Единственная возможность "выделиться" в подобном испытании, это продемонстрировать результаты худшие, чем при использовании обычного масла. Это было бы смешно, если бы не было правдой.

Условия, названные "специальными", оказываются совершенно нереальными, причем нереально легкими и это очевидно всем, кто хотя бы немного занимался изучением вопроса. Тем не менее, рассуждения про "допуски производителя", "испытания производителем", при полном отсутствии информации о практической стороне этих испытаний, являются основными и определяющими при выборе масла. У 90% российских (все же московских) пользователей современного "европейского" автопарка производства "большой тройки", двигатель "без проблем" не перешагивал даже отметку в 100.000 км, при условии строгого соблюдения всех требований производителя!

Очень странно было бы не пытаться всеми доступными способами отодвинуть этот рубеж, поэтому ничего более абсурдного чем лозунг  "не лейте туда ничего лишнего, туда уже все добавил производитель" придумать, пожалуй, невозможно.

Призыв "ничего лишнего" уместен лишь там, где можно только испортить. Если статуя простояла 2000 лет и за время "эксплуатации" у нее уже отбиты нос и уши, то, очевидно, продолжая таскать ее с места на место, есть ненулевые шансы что-то дополнительно отколоть и повредить. Если же грядка гарантированно пятилетних растений на четвертом году жизни начинает поливаться и удобряться не только водой, но и сиропом, бензином и хлоргексидином, то существует ненулевая вероятность, что вы наблюдаете за испытаниями, а  не за целенаправленным вредительством.

Основной фокус исследовательской деятельности должен быть направлен на недопущение эксплуатационных коллизий, а не на исправление уже возникших проблем. В саму технологию ремонта уже сложно внести что-то новое, значительно больше шансов воздействовать на сам эксплуатационный период.

Вернемся к присадкам.

Очевидно, что наиболее просты и податливы к испытаниям препараты "мгновенного" действия с обратимым результатом: вроде как "изъял из двигателя и все вернул обратно". К ним, очевидно, можно отнести почти все модификаторы (агенты) трения, включая и обычные присадки входящие в состав любого современного масла. Практически все, что способно формировать "прослойку" между парами трения (ZDDP, NB), сюда попадет и "скользкая органика", со всем многообразием углеродных модификаторов. Испытывать подобные технологии несложно: приобрел, залил, и результат можно наблюдать незамедлительно, любым доступным способом.

Ориентиром может быть что угодно, являющееся для индивида определяющим критерием, вплоть до того момента, пока означенный индивид не начинает урезать сам себе горизонты самодоверия. Тогда может потребоваться и инструментальный контроль - акустический, стендовый, контроль расхода топлива и так далее, если доступ к таковым имеется и точно знаешь что и для чего делаешь.

Вызывает недоумение, однако, попытка измерить и оценить переходные процессы любого рода на динамическом стенде, где ширина окна измерения составляет порядка 15-20 секунд.

Частным случаем такой порочной практики, является и попытка измерить влияние "качества" масла на внешнюю скоростную характеристику двигателя, где к отсутствию контроля и учета временного фактора добавляется еще и относительно малая часть потерь "на трение" в случае, когда дроссель, фактически, открыт "на максимум".

Ускорение является производной от скорости, эластичность, очевидно, должна быть своего рода "производной" от внешней скоростной, интегрально накопленной характеристики момента и мощности. Ни в каком виде не нужно смешивать эти понятия. Никому в голову, почему-то, не приходит возможность сравнения динамики двух автомобилей, с примерно равной максимальной скоростью. Эти самые околомаксимальные 250 км/ч один автомобиль может набирать 15 секунд, а второй едва наберет и за все 30...

Если на что и смотреть, то именно на скорость достижения этой величины. Мотор грузовика по запасу момента может мало отличаться от спортивного автомобиля и даже его заметно превосходить. Но все понимают, для получения динамики нужен не столько сам момент, сколько мощность - производная от момента - работа по времени.

Испытывать, очевидно, необходимо т.н. "эластичность", упор делать на "частичные нагрузки", когда дроссель не открывается полностью. Самое забавное, что испытывают (пытаются) все равно именно так, как выше описано, но ездят, в 90% случаев, по городу и совсем не "газ в пол", имея все шансы ощущать и не использовать то, что как раз "не видно" на стенде.

Более того, даже в момент разгона, все стараются обращать внимание как раз-таки на "отклик на педаль" - это самый настоящий переходной процесс. Его длительность под нагрузкой составляет величину не более секунды, а именно столько времени проходит до момента стабилизации давления в цилиндре, когда основной "всплеск" скачкообразного роста давления уже преодолен, двигатель уже начал раскручиваться и делает это все легче и легче, приближаясь к "полке" момента...

Необходимо определять и анализировать именно такие состояния, когда трение "важно" и "заметно", хотя это и не всегда просто. И одним из лучших и надежных способов определения результата, является репрезентативный анализ мнений водителей, профессионалов и не очень, просто знающих и понимающих свой автомобиль. Получение обратной связи по поведению двигателя, в совокупности с возможным инструментальным контролем, дает исчерпывающую картину полезности практически любого продукта.

Исходное качество "работавших" поверхностей трения у типичного автомобиля с относительно небольшим пробегом, предлагаю вам оценить самостоятельно, посмотрев на иллюстрации первой части статьи. Кстати, если вы когда-то меняли толкатели клапанов в своем автомобиле и вам показалось, что двигатель теперь работает потише и крутится полегче, то вам совсем не показалось. Все именно так и было и тому есть совершенно логичное объяснение.

Аналогичные наблюдения, связанные, очевидно, с оптимизацией "качества" рабочих поверхностей характерны и для применения многих добавляемых в масло модификаторов трения, которые входят в состав масла и способны взаимодействовать с поверхностью трения примерно вот таким образом (представлена упрощенная модель):

Еще вариант:

Такие частицы, как видно, формируют "гладкий" приповерхностный слой, что заметно снижает контактное трение и время взаимодействия пары "металл-металл".

В "сухом виде", почти все известные модификаторы трения выглядят как пудра:

Кстати, на правом фото т.н. "гексагональный нитрид бора" китайского производства довольно крупной дисперсии. Малосведующие граждане на полном серьезе рассуждают о возможности применить его на практике в автомобиле (реальная стоимость сырья такого качества 20-100 USD за кг), советую рассмотреть фотографию поближе и оценить (хотя бы "на глаз") размер частицы с пропускной способностью масляного фильтра (около 20 мкм, а если верить серьезным производителям, то и до 10 мкм). Существует ненулевая вероятность, в самом скором времени достать половину введенного сырья из фильтра, с учетом предлагаемых 1-5 мкм против "ксенумовских" 0,25 мкм, производимых на одном из заводов "Henkel". Подобное мелкодисперсное сырье (аналогичное применяемому Xenum) стоит заметно дороже, что, однако, не должно останавливать истинных экспериментаторов, которых спасает лишь то, что 99,9% из них никуда дальше этих самых разговоров и не продвинутся.

Несложно сформулировать базовые требования к "присадкам" такого рода, а именно:

1.Размеры частиц должны с запасом соответствовать тонкости отсева масляного фильтра.2.Стабильность характеристик вещества в условии высоких температур.3.Хорошая адгезия к металлу - способность проявлять свойства полярности для формирования защитного слоя.

В результате, использование этих веществ дает возможность понизить трение скольжения в 3 и более раз, что в пересчете в абсолютные единицы, при условии трения смазанной пары вида сталь/сталь (к.т. около 0,15), должно понизить коэфф. трения до уровня около 0,05 и даже ниже. В абсолютных цифрах, это можно было бы представить рассмотрев потери на открытие 4 клапанов единовременно, как это обычно происходит в единицу времени в современном двигателе. Усилие открытия каждого клапана составляет около 60 кгс, что в сумме дает примерно 240 кг. Потери на трение, соответственно, составят почти 36 кгс. Рассмотрев снижение трения хотя бы в три раза, получим немалую разницу в 24 кгс для ГРМ обычного автомобиля.

Различия внутри самого класса модификаторов трения, главным образом, с фактическим размером частиц и концентрацией их в готовом продукте, а также потенциальной температурной стабильностью и процессами, связанными с изменением качества самого вещества под действием температуры.

Нитрид бора, при прочих равных, может иметь заметное преимущество по температурной стабильности (заметно выше 800 градусов Цельсия, против 400-500 у молибденосодержащих соединений). Какой-нибудь новомодный дисульфид вольфрама - преимущество в потенциально достижимом коэффициенте трения. И так далее. В конечном итоге, будет немаловажна даже удельная масса - это влияет на способность удерживаться в растворе под действием гравитации.

Вызывает легкую иронию неподдельная радость пользователей масел с незначительным содержанием "легкого" moDTC, практически не дающего видимого осадка, на фоне заметно более дорогих (ключевое слово, для производителей) и тяжелых дисульфида вольфрама или того же нитрида бора, такой осадок, разумеется, дающих. Первые же секунды работы двигателя, после сколь угодно длительного простоя, эту "разницу" целиком уничтожают: масло в двигателе "взбалтывается" под давлением до 5-6 атм и фантастическим расходом до сотни литров в минуту. Чтобы ощутить этот факт на практике, достаточно снять клапанную крышку, завести двигатель и хорошо нажать на газ...

В самом "ужасном" случае, даже если автомобиль простоял год и весь свободный присадочный компонент осадился на дне картера, это всего лишь равнозначно секундам работы двигателя на "обычном масле" без тех частей присадки, которые не успели высадиться на поверхность металла. В сам же момент запуска, очевидно, на металле присутствует все тот же NB, или moDTC. Спустя минуту, масло уже перемешано до полностью рабочего состояния. Невероятно, но вопрос про эту "проблему" был одним из самых частых, хотя суть опасений, уверен, не вполне ясна любому вопрошающему...

Если же мы будем рассматривать предлагаемые промышленностью продукты (то есть, уже готовое моторное масло) с точки зрения эффективности, то прямое сравнение использованных элементов будет не всегда корректным - концентрация активного компонента может заметно различаться от бренда к бренду. Сложно прямо противопоставлять, например, 500-600 ppm MoDTC у многих распространенных "тюнинговых" масел, тому же Xenum WRX с его 1800-2000 ppm hNB.

Вполне возможно, что заметное преимущество последнего связано, например, не только с концентрацией, но и с самим размером частиц. Но не с самим "модифицирующим" компонентом.Как видно на гистограмме, для разных модификаторов существует не только прямая зависимость от концентрации, но и предел насыщения, когда дальнейшее увеличение концентрации уже не приносит улучшения.

Думаю, такие зависимости существуют и для различной дисперсии сырья, что применимо к многим модификаторам. Так, например, тот же гексагональный нитрид бора возможно приобрести и использовать в размерах от 100 до  5, 2, 1.5, 0.5, 0,25 и 0,07 мкм!

Так что не корректно говорить, что модификатор "один" эффективнее модификатора "два", если нету гарантии хотя бы равной концентрации его в продукте. Сравнению подлежат только готовые продукты - сами масла.

Также хотелось бы отметить, что допустимая в индустрии шероховатость пары кулачок-толкатель составляет примерно 0,32-0,63 мкм (8 класс шероховатости), поэтому неплохо бы соизмерять предполагаемые к использованию частицы с этой величиной, если вы надумаете экспериментировать самостоятельно и рассчитываете на прямой эффект от применения. С другой стороны, изношенный двигатель, чаще всего имеет заметно более "грязные" поверхности трения и эффект будет на нем ожидаемо заметнее даже при условии применения частиц более крупной дисперсии.

Примечательны также и некоторые исследования "механизмов работы" подобных присадок, в плане их взаимодействия с поверхностью деталей в двигателе. При высоких температурах, возможно, происходит также и модификация (адсорбция) рабочей поверхности с образованием соединений железа и серы (в случае дисульфида молибдена, например), поэтому не стоит рассматривать исключительно один лишь механизм снижения трения ориентируясь, только лишь на "лабораторные коэффициенты" трения этих веществ в приповерхностной зоне.

В целом, хотелось бы еще раз отметить сравнительно простой и доступный (во всех смыслах) способ применения и оценки подобных "технологий", но и это не поможет тем, кто привык  оценивать и осуждать технологии исключительно по картинкам в Сети.

О более сложных препаратах и технологиях поговорим в следующей статье...

bmwservice.livejournal.com

Присадки к маслам — экспертиза — журнал За рулем

Присадки к маслам — что это? Что дают самые спорные препараты автохимии? В теорию вопроса углубился профессор Александр Шабанов.

01

Ехидная усмешка рекламы любит прятаться за обилием обещаний и заумностью формулировок. Типичный пример — автохимия: напустить тумана здесь проще простого. Развеять его помогает классическая теория двигателей внутреннего сгорания (ДВС), которая прекрасно знает, на какие реальные эффекты можно надеяться.

На что обычно хочется повлиять среднему потребителю, изучающему витрину с препаратами? Пожалуй, на мощность и динамику автомобиля. Да еще на расход топлива. А возможно ли такое теоретически? И если да, то как этот эффект получить? И неплохо бы знать, насколько существенным он может быть, чтобы заранее не готовиться к чудесам.

ИНФОРМАЦИЯ К РАЗМЫШЛЕНИЮ

Берем литр топлива и сжигаем его в двигателе. Какая часть этого литра принесет нам пользу, а какая пропадет зря? Иными словами, чему равен коэффициент полезного действия?

Материалы по теме

Самыми совершенными и эффективными являются тяжелые малооборотные судовые дизели с цилиндрами больших диаметров. Там из каждого литра топлива на пользу идет до 520–540 миллилитров. Остальное греет воздух (вместе с отработавшими газами и охлаждающей жидкостью), а также крутит насосы и агрегаты. Совсем небольшая часть (не больше 10–20 мл) не сгорает, а потому портит атмосферу. Чем миниатюрнее двигатель и чем выше обороты, тем меньше топлива идет в толк. В одноцилиндровом бензиновом движке бензопилы или газонокосилки из литра бензина толково используется всего 150–200 мл. Автомобильные двигатели — где-то посередине.

В реальности всё гораздо хуже, чем на стенде. К примеру, едем мы в пятницу из города (читай: стоим в пробке). Мотор крутится на холостых, качество сгорания никудышное. Из того же литра бензина не сгорит 80–100 мл: сказывается плохое качество газообмена, а вместе с ним и сгорания — из-за сильно прикрытой дроссельной заслонки. А все остальное топливо идет на обеспечение жизни мотора, нам от него не достается ничего — разве что в виде холодного потока от кондиционера. Иными словами, эффективная мощность, а также эффективный и механический КПД вообще равны нулю, поскольку машина не движется. При увеличении подачи топлива мощность растет, а с ней и оба этих КПД. Но в любом случае механический КПД при номинальной частоте вращения коленчатого вала и полной нагрузке не поднимается выше 0,75 для высокооборотного двигателя и 0,90–0,92 для малооборотного. А в среднем для автомобильного мотора в режимах городского цикла он составит 0,35–0,50.

Итак, мы, во‑первых, сжигаем не всё, что льем в цилиндры. Во‑вторых, слишком много расходуем на обеспечение функционирования мотора, то есть на механические потери.

Пути повышения эффективности ДВС очевидны: нужно повысить полноту сгорания и снизить непроизводительные потери. На качество сгорания присадки точно не влияют. А на потери?

КПД
Степень совершенства двигателя и процессов, происходящих в нем, наиболее полно характеризует так называемый эффективный КПД. Это произведение двух других коэффициентов полезного действия: индикаторного, который, условно говоря, отвечает за качество того, чтó и как горит, — и механического, который поясняет, сколько топлива сжигается только для обеспечения жизни самого двигателя. Ведь необходимо компенсировать то трение, которое обязательно присутствует в узлах, обеспечить работу механизма газораспределения, насосов, генератора, без которых двигатель не может функционировать.

02

1. Так выглядела поверхность первого поршневого кольца изрядно побитого жизнью мотора до обработки (увеличение в 64 раза)…  2 …а так — после того, как двигатель прошел полную обработку препаратом на базе ГМТ.

1. Так выглядела поверхность первого поршневого кольца изрядно побитого жизнью мотора до обработки (увеличение в 64 раза)…  2 …а так — после того, как двигатель прошел полную обработку препаратом на базе ГМТ.

1. Так выглядела поверхность первого поршневого кольца изрядно побитого жизнью мотора до обработки (увеличение в 64 раза)… 2 …а так — после того, как двигатель прошел полную обработку препаратом на базе ГМТ.

КРИЗИСНЫЙ МЕНЕДЖЕР

Механические потери, съедающие львиную долю топлива, состоят из нескольких слагаемых. Потери на привод механизма газораспределения плюс расходы на масляный и топливный насосы, помпу системы охлаждения, генератор и привод крыльчатки вентилятора, а также на мощность, необходимую для осуществления процесса газообмена, —это так называемые насосные потери. Всё остальное (от 50 до 80%) — потери на преодоление сил трения в двигателе. Вот с трением как раз и борются триботехнические составы.

table-01

Трибосоставы сокращают зону граничного трения, что существенно уменьшает потери на трение в двигателе. Особо это заметно вблизи верхней мертвой точки, где поршень еле движется, а нагрузка на поршневые кольца очень велика.

Трибосоставы сокращают зону граничного трения, что существенно уменьшает потери на трение в двигателе. Особо это заметно вблизи верхней мертвой точки, где поршень еле движется, а нагрузка на поршневые кольца очень велика.

Трибосоставы сокращают зону граничного трения, что существенно уменьшает потери на трение в двигателе. Особо это заметно вблизи верхней мертвой точки, где поршень еле движется, а нагрузка на поршневые кольца очень велика.

В двигателе трение может быть трех видов.

При сухом трении две шероховатые поверхности скребутся друг о друга без всякой смазки. Такое случается только тогда, когда смазочная система еще не работает, то есть в пусковых режимах после длинного простоя.

В случае граничного трения между поверхностями есть следы масла, но толщина разделяющего слоя недостаточна для формирования устойчивой пленки. Это возможно в некоторых рабочих режимах — например, при низкой частоте вращения коленчатого вала и высокой нагрузке. Такое может случиться и если нагрузки на узлы трения велики, а масло слишком горячее.

Третий вид, основной, — гидродинамическое трение: поверхности деталей, образующих пару трения, разделены устойчивой масляной пленкой, толщина которой превышает некоторую критическую величину, условно принимаемую за утроенную суммарную высоту шероховатостей поверхностей.

table_04_1

Итог обработки трибосоставом Liqui Moly — общее снижение момента (а значит, и мощности) трения в моторе. Двигатель ВАЗ‑2112, пробег до обработки — 110 тысяч километров.

Итог обработки трибосоставом Liqui Moly — общее снижение момента (а значит, и мощности) трения в моторе. Двигатель ВАЗ‑2112, пробег до обработки — 110 тысяч километров.

Итог обработки трибосоставом Liqui Moly — общее снижение момента (а значит, и мощности) трения в моторе. Двигатель ВАЗ‑2112, пробег до обработки — 110 тысяч километров.

При сухом трении его сила может достигать 20–40% внешней нагрузки, при граничном — 5–15%, а при гидродинамическом падает до долей процента. Очевидно, что для экономии хорошо бы заставить работать в гидродинамическом режиме все пары. Для этого оптимизируют форму деталей и выбирают подходящие масла. А еще можно уменьшить суммарную шероховатость поверхностей и снизить коэффициенты трения на них, тогда и зона гидродинамического трения расширится. Особенно это важно при малых частотах вращения коленчатого вала, когда нет условий для формирования достаточного разделяющего слоя, и в режимах максимальных нагрузок, когда слой «просаживается» мощными контактными давлениями. Запомним это!

Особо продвинутые могут возразить: но ведь на абсолютно гладких поверхностях и масло держаться не будет, вспомните, дескать, про хонингование. И будут правы! Однако тут начинают работать новые свойства поверхностей, обусловленные применением трибосоставов. Но об этом — чуть ниже.

КАК?

Итак, как работают трибосоставы? Вариантов может быть несколько, и они зависят от того, на базе какого активного компонента эти составы построены. Основные механизмы следующие.

Материалы по теме

Микрошлифовка. Наиболее эффективный по воздействию на поверхности трения трибосостав построен на базе геомодификаторов трения — минеральных порошков особого состава, которые при формировании защитного слоя шлифуют рабочие поверхности узлов трения, уменьшая высоту микронеровностей в два-три раза. При этом на 15–20% увеличивается твердость поверхностных слоев пар трения. А это означает рост износостойкости поверхностей — твердость с ней коррелирует очень четко.

Металлоплакирующие составы укрывают шероховатую поверхность новым микрослоем, состоящим из мягких металлов (чаще всего из меди), при этом шероховатость тоже резко падает. Уменьшается и коэффициент трения. Но при этом снижается твердость! Очевидно, что компенсация износа мягкого защитного слоя будет происходить, только когда в масле достаточно «строительного материала» — той же меди, а потому использование таких составов требует регулярного ввода их в масло, как минимум при каждой его смене.

Плакирование слоистыми модификаторами или полимерами. Это отдельная группа составов, которые содержат вещества (например, графит, дисульфид молибдена, тефлон), чье внедрение в поверхностные слои узлов двигателя резко снижает коэффициент трения. Удаление отложений. Большинство трибосоставов при вводе в двигатель начинают его активно мыть, удалять отложения в зонах трения. В частности, это улучшает подвижность поршневых колец, их прилегаемость к зеркалу цилиндра.

И ЧТО?

Что это дает двигателю? Эффектов несколько, и в сумме они дают рост мощности и снижение расхода топлива.

Удаление царапин. Это один из важных аспектов воздействия трибологических составов на процессы трения. Они умеют «залечивать» рабочие поверхности.

В процессе жизненного цикла на поверхностях вкладышей подшипников, шеек коленчатого вала, цилиндров и поршневых колец образуются продольные царапины, сколы антифрикционного слоя, раковины и прочие «украшения». Глубина этих дефектов обычно существенно превышает рабочую толщину масляной пленки. Но в результате обработки двигателя трибосоставом дефекты зашлифовываются или плакируются. При этом восстанавливается несущая способность подшипников, что также снижает механические потери, особенно у «пожилого» мотора.

table_02_1

Результаты замеров микротвердости поверхности коренной шейки коленчатого вала изношенного двигателя до и после его обработки трибосоставом на базе геомодификаторов трения (ГМТ). Снижение твердости до обработки — свидетельство срабатывания упрочненного слоя, то есть износа. Две последовательные обработки трибосоставом Супротек постепенно ее восстанавливают — формируется упрочненный слой, который обеспечивает еще и значительно меньший коэффициент трения. Увеличения размера шейки при этом не наблюдается.

Результаты замеров микротвердости поверхности коренной шейки коленчатого вала изношенного двигателя до и после его обработки трибосоставом на базе геомодификаторов трения (ГМТ). Снижение твердости до обработки — свидетельство срабатывания упрочненного слоя, то есть износа. Две последовательные обработки трибосоставом Супротек постепенно ее восстанавливают — формируется упрочненный слой, который обеспечивает еще и значительно меньший коэффициент трения. Увеличения размера шейки при этом не наблюдается.

Результаты замеров микротвердости поверхности коренной шейки коленчатого вала изношенного двигателя до и после его обработки трибосоставом на базе геомодификаторов трения (ГМТ). Снижение твердости до обработки — свидетельство срабатывания упрочненного слоя, то есть износа. Две последовательные обработки трибосоставом Супротек постепенно ее восстанавливают — формируется упрочненный слой, который обеспечивает еще и значительно меньший коэффициент трения. Увеличения размера шейки при этом не наблюдается.

Снижение трения. Трибосоставы снижают коэффициенты трения! Есть целый спектр режимов работы двигателя, в которых либо масляная пленка слаба (при малых оборотах), либо нагрузки слишком велики (номинальные режимы), либо масло слишком горячее (они же плюс малые обороты с высокой нагрузкой). В этих зонах велика доля граничного трения, которое может на порядок превышать гидродинамическое. Именно поэтому максимальный эффект обработки двигателя трибосоставами проявляется на холостом ходу, когда вся вырабатываемая при сгорании энергия идет на механические потери, а также на малых оборотах и при номинальных нагрузках на двигатель.

А вот при средних нагрузках, обычно характерных для шоссейного цикла езды, эффект менее заметен. Но там мотору и так неплохо живется — давление масла высокое, обдув хороший, режим работы относительно стабильный.

Рост и выравнивание компрессии. Удаление отложений, а также залечивание дефектов трения на рабочих поверхностях цилиндров и колец на практике проявляется заметным ростом компрессии и ее выравниванием между отдельными цилиндрами. Тут тоже получается процент-другой экономии, но главное — улучшение пусковых показателей двигателя.

Ошибка в терминологии

Присадки в масло как таковые — неотъемлемая часть обычного товарного масла, формирующая его свойства. Мы заливаем присадки всякий раз при смене моторного масла, причем их количество составляет 20–30% общего объема масла. А описываемые препараты не формируют его свойств — они влияют на свойства поверхностей трения. Это совсем другая область. Потому правильнее называть группу препаратов триботехническими составами.

Геомодификаторы трения (ГМТ) — группа трибосоставов, имеющая в качестве активного элемента мелкодисперсные минеральные порошки на базе серпентинита (змеевик), обеспечивающего мягкую микрошлифовку поверхностей трения и формирование на нем защитных слоев.

Металлоплакирующие составы — группа трибосоставов, активным компонентом которых являются мелкодисперсные частицы мягких металлов, чаще всего меди. Формируют в узлах двигателя стойкую пленку, укрывающую шероховатую рабочую поверхность зоны трения.

Слоистые модификаторы — группа трибосоставов, в которых работают вещества (графит, дисульфид молибдена и аналогичные), обеспечивающие благодаря слоистой структуре аномально низкий коэффициент трения в поверхностных слоях рабочих поверхностей трения.

«Кондиционеры металлов» — маркетинговый термин, введенный производителем состава. Формируют защитную «сервовитную» пленку (тоже маркетинговый термин), по всем признакам обладающую свойствами составов вышеописанных групп.

И СКОЛЬКО?

С теорией ясно: трибосоставы способны приносить пользу. А на практике? Наибольший эффект следует искать там, где доля механических потерь сильнее всего влияет на КПД. А это, конечно же, холостой ход. Обороты минимальны, двигатель работает в режиме преимущественно граничного трения. Допустим, что обработка трибосоставом снизила коэффициенты трения в полтора раза. Теперь примем, что доля потерь на трение в общем балансе механических потерь составляет 60%. Это означает, что суммарный ожидаемый эффект снижения расхода топлива в режиме холостого хода может составить до 20%!

Зона малых частот вращения, до 1500–2000 об/мин, характеризуется примерно равным соотношением зон гидродинамического трения и граничного. Эффект снижения гидродинамического трения зависит от исходного состояния двигателя. У нового, правильно обкатанного, он практически незаметен. Если же двигатель был побит жизнью и неласковым владельцем, а вкладыши и цилиндры поцарапаны, то тут за счет восстановления поверхностей можно ждать около 5–7% снижения потерь на трение. Суммарный же эффект может составить 10–12%, что в пересчете на экономию топлива даст 3–6%, в зависимости от нагрузки на двигатель.

В основной зоне работы двигателя, когда работает гидродинамика, видимый эффект снижения потерь на трение будет минимальным — те же 5–7%, причем зависящие от исходного состояния двигателя. А это сулит снижение расхода топлива всего на 1,5–2,0%.

table_03_1

Результаты замеров компрессии в цилиндрах двигателя до и после обработки трибосоставом на базе ГМТ показывают, что уплотнение камер сгорания улучшилось. Это следствие улучшения прилегания колец к цилиндрам и повышения их подвижности.

Результаты замеров компрессии в цилиндрах двигателя до и после обработки трибосоставом на базе ГМТ показывают, что уплотнение камер сгорания улучшилось. Это следствие улучшения прилегания колец к цилиндрам и повышения их подвижности.

Результаты замеров компрессии в цилиндрах двигателя до и после обработки трибосоставом на базе ГМТ показывают, что уплотнение камер сгорания улучшилось. Это следствие улучшения прилегания колец к цилиндрам и повышения их подвижности.

А дальше — считайте. Всё зависит от того, что было с мотором до обработки, в каких режимах он в основном работает. Рассмотрим пример обычной легковушки с атмосферным движком объемом 1,6 л. Предположим, что около 40% рабочего времени она стоит в пробках, расходуя 0,8 л/ч. Ровно такое же время отпустим на езду по городу со средней скоростью 40 км/ч и расходом топлива 10 л/100 км. Плюс на дачу по выходным (суммарно 20% времени в неделю) — со скоростью 90 км/ч и расходом 8 л/100 км. В среднем три часа в пути каждый день. Исходное состояние мотора — среднеубитое. Еженедельный расход топлива составляет примерно бак, то есть 50 л. После обработки трибосоставом (качественным и правильным, естественно) расход снизится до 46 л в неделю, то есть на 8%! И это — правильная и оправданная цифра.

Материалы по теме

Если в пробках стоять больше, а на трассу вообще не выезжать, экономия будет заметнее, поскольку в этих режимах более значима мощность потерь на трение. Если использовать машину в режиме деда-дачника, то видимый эффект будет меньше: в этих режимах механический КПД и так неплохой, небольшое его увеличение даст лишь несколько процентов снижения расхода топлива. В среднем не больше 5–10%. Много это или мало? Решайте сами!

А что ждать от мощности и динамики?

Рост мощности должен быть прямо пропорционален снижению мощности потерь на трение. Сколько это в «лошадях»? Допустим, тот же самый мотор имеет номинальную мощность 105 л.с. При механическом КПД, равном в номинальном режиме 0,73 (для атмосферника это где-то так), на механические потери приходится 39 л.с.

На номинале, где в основном работает гидродинамика и лишь малая часть времени приходится на граничное трение, снижение мощности механических потерь составит 5–8%. Это две-три «лошадки». Много? Не очень — но соизмеримо с результатом простейшего тюнинга мотора, без его вскрытия. Важно другое: наибольший эффект по динамике, как показывает практика испытаний, идет от изменения моментной кривой двигателя. Несмотря на сравнительно небольшой рост максимального крутящего момента, его максимум сдвигается ближе к зоне малых оборотов и сама кривая получает полку. А это то самое, что в большей степени ощущается при нажатии педали акселератора.

Итак, даже с точки зрения теории толк от трибосоставов вполне объясним. Но это только начало разговора о присадках в масло. Остается еще много вопросов — например, что еще они могут, какие лучше и как их применять. Но об этом — в следующий раз.

Фотогалерея

Ошибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

www.zr.ru

Масштабное тестирование моторных масел и модификатора трения

В современном мире оголтелого дигитализма, каждое "улучшение" приходится обосновывать цифрами. Мало человеку только "ощущений", к ним обязательно нужно приложить цифры этих ощущений. Говоришь, например, что у Iphone 5S - лучший дисплей (и слепому вроде бы ясно), изволь показать "точки на дюйм" и охват "цветовой палитры sRGB". Без этого не поверят! Пару версий назад, обзорщики и разработчики Android уже заявляли ту же "smoothness" работы системы, что и у iOS. Типа, все уже почти так же плавно, все так же гладко... Вот уже скоро два года, а оно все "почти", хотя линейку к этому факту никак не приложишь, приходиться на слово верить, до тех пор, пока глазами не сравнишь...

Современная видеокарта класса high-end в средних по нагруженности играх показывает поддерживают по-прежнему высокий уровень и ощущения движения передаются так хорошо, насколько это возможно. Попробуйте выключить звук совсем и сравните - а машина-то "едет" абсолютно так же. Не зря же многие современные "подогретые" автомобили даже подают звук синтезированного выхлопа в салон...

Я еще обязательно вернусь к этому факту в статье.

Итак, что же можно выцепить из анализа статистики гонки, если реальный доступ обеспечен лишь ко времени прохождения трассы? Лучший абсолютный результат единичен и абсурден. В математике это понятие сродни эксцессу. В статистике, эксцессы вообще исключаются из рассмотрения - любой "рекорд" это лишь вариант случайности. Ни один спортсмен не сможет ставить рекорды каждый день. Более того, рекорд, просто по определению, вообще можно поставить всего один раз.

Конечно, разумным бы выглядело усреднение времени прохождения трассы для каждого пилота, чтобы получить среднее время, как эффективную оценку. Звучит вроде бы неплохо. Чаще всего, это уже реализовано на уровне софта и выдается пилоту в распечатанном виде:Рис. 1 РезультатыПроблема заключается в том, что эта величина конфликтует с форматом проведения испытания - гонщики вынуждены совершать обгоны, а также пропускать круговых, имеют право на пару-тройку кругов "неудачного" прохождения трассы. При усреднении результатов гонщиков высокого класса, с минимальной разницей в качестве пилотирования, такое усреднение может сделать первых - последними. И наоборот. А уж если при таком уровне методологии начать "сравнивать масла" в разных заездах и делать выводы...

Тем не менее, я попытался использовать все разумные методики анализа, а также предпринял попытку обойти все возможные недостатки всех возможных методик.

Перед оглашением результатов, хотел бы обратить внимание на такой факт: по заверениям организаторов, при увеличении мощности двигателя на 4 л.с. разница результатов на данной трассе составит величину всего около 1,5 секунд (лучшее время профессионального заезда для 9 л.с., составляет примерно 24 секунды).

То есть, динамический коридор в полторы секунды, обуславливаемый дополнительной мощностью в +4 л.с., соответствует всего лишь 6,25% улучшения рекордного времени. И где-то в этих жалких процентах "затерялось" бы чистое влияние масла. Не уж так сложно подсчитать, что на 1 секунду улучшения результата приходится около 2,6 л.с. "эффективной мощности". А это очень много по меркам исходной мощности двигателя в 9 л.с. - четверть!

Одна десятая часть секунды может "весить" четверть лошадиной силы! Не думай о секундах свысока!

Вот так выглядит общая "кардиограмма" заездов, сглаженная, с устраненными эксцессами - моментами обгонов, редких столкновений и т.д.Это распределение времени кругов всей гонки для заезда на каждом брендовом масле - Motul, Mobil, Castrol и Xenum.Рис. 2 «Пуль гонки» со сглаживаем

Для сравнения, вот полная кардиограмма времени всей гонки, снятая только для "легкой" группы пилотов - двух гонщиков одной массы - 57 кг, но без математического усреднения. С точки зрения физики, два карта с пилотами были практически одинаковы, но и то довольно непричесанно выглядит - попробуйте сделать хоть какие-то выводы...Рис. 3 «Пульс гонки» по легкой группе «57» без сглаживания

Я уверен, что вылавливать из таких данных в чистом виде нечего - каждый абсолютный заезд безнадежно "зашумлен", работать можно только с относительными данными. Если первый "прогревочный" заезд еще заметно отличается от остальных (синий график), то группа последующих трех практически неразличима!

Для начала, рассмотрим карту времен первого заезда с цветовой маркировкой относительно среднего времени тело. Зеленым - медленные круги. Красным - быстрые круги. Белым - средние круги. Выделенные границы довольно условны, но дают представление о разграничении этих зон:

Рис. 4 Это был заезд на "обычном" масле "Motul 6100 10W40"Это был заезд на "обычном" масле "Motul 6100 10W40", которым изначально были заправлены все клубные карты.

Хорошо заметны очевидные закономерности:

  1. Легко просматриваются т.н. "холодные круги" и даже зона "стабилизации" - это почти половина этого заезда и почти целая секунда разницы! Здесь, уверен, немало повлиял прогрев резины и полотна трассы. Карты предварительно прогревались, но грелись только двигатели.
  2. Участок "насыщения" наступает примерно с 23 круга - пилоты начинают штамповать "зачетные" - красные - круги. По хронометражу, это почти что экватор гонки - около 50% всего заезда ушло на прогрев. По цвету заметно, что "съезженность" этого участка высокая - все дальнейшие круги стабильны - почти все красного цвета.

Второй заезд: масло Mobil 1 низкой вязкости - 0W20Картина заметно меняется, хронометраж "вкатывания" сужается (резина в начале заезда уже явно не комнатной температуры, полотно трассы также прогрелось), а сами зачетные круги начинаются раньше, также заметны, например, "зеленые" следы коллизии на 18 круге...

Как и в предыдущем тесте, зачетная зона очень ровная, поэтому и здесь и ранее, мною для ориентира взяты разностные значения крайних участков зоны... Прогрев вроде бы такой же по протяженности, но заметно короче про абсолютному разрыву во времени - около 0,5 секунды - примерно в два раза:Рис. 5 Mobil 1 низкой вязкости - 0W20

Масло Castrol 10W60На этом масле три пилота практически избежали зону холодного "вкатывания". Но в целом, картина практически идентична предыдущей, за исключением "медленных" эксцессов в конце гонки, которые немного повлияли на усредненный результат...Рис. 6 Заезд на Castrol 10W60

На масле Xenum WRX10W40Масло категории "с модификатором трения") наблюдаем совершенно иное распределение:

Рис. 7 Заезд на Xenum WRX10W40

Участок "вкатывания" практически отсутствует - гонщики сразу выходят "на режим".

На колонке "усреднение" заметно, что стабильность результата всего пелетона разительно отличается от первых заездов! Смотрите правый столбец - он почти идеально "красно-белый".

К сожалению, третий карт приготовил нам настоящую подставу - на 34 кругу у него подзакусил тросик газа...

Вынужденный сход с трассы немного (результативных кругов все равно сделано достаточно) размыл статистику, однако эти таблицы не являются центральными в исследовании, а лишь демонстрируют общие тенденции распределения. Значимые результаты будут рассмотрены в дальнейшем.

Заезд с модификатором тренияНемаловажен и дополнительный эксперимент с геомодификатором трения, когда в два автомобиля вернули масло Motul (маркированы "ММ" в сравнении с Xenum - "XM") и после минимального времени приработки модификатора во всех машинах повторили заезд - зачетные круги по двум картам формально начались с первого же круга!

Рис. 8 Заезд с модификаторами трения

А вот результаты контрольного заезда, выполненного маршалом трассы (кругов меньше по очевидной причине - нужно же было давать старт и финиш гонки). Для самого первого, "холодного" заезда, контроля не осуществлялось. Видно, что выраженных аномалий распределения не выявлено. Особенно это заметно в сравнениис "модификаторами" - двумя последними заездами. Здесь на всем протяжении заметна зеленая и зона "вкатывания" и "красное" зачетное время.

Рис. 9 Контрольный заезд

Методология дальнейшей обработки информации приведена в этой таблице:

  1. Из всей гонки были отфильтрованы десять и двадцать лучших кругов для каждого пилота на каждом масле.
  2. Вторым шагом, был выявлен разрыв в пелетоне (от самого быстрого до самого медленного времени) для каждого заезда по 10 и 20 лучшим кругам.
  3. Был также оценен разрыв "лучший"-"худший" результат для каждого пилота и по каждому заезду.

Рис. 10 Подбиваем результаты

Вот так распределились "лучшие времена" по 20 кругам в течение всей гонки, по трем группам гонщиков. Внимание: хорошо заметно, что "среднее время гонки" для последних трех заездов практически идентично, какую группу вы не возьмите. Более того, заезд "с модификатором", в среднем оказался даже чуть медленнее.

Рис. 11 Лучшее время по 20 кругам

Стабильность времени для каждого пилота с усреднением по каждому заезду. Этот график показывает, насколько пилот проигрывает "сам себе" в лучших кругах каждой своей гонки. Насколько стабильно он пилотировал. Любая аномалия была бы выявлена: например, если бы он начал специально "заваливать" гонку на каком-то масле. Средняя величина, полученная независимым пилотом на одном и том же масле составила почти точно 0,3 с.

Все, что не вписывалось бы в этот результат, создало бы повод для выяснения причин подобной необъективности.

Рис. 12 Стабильность времени прохождения лучших кругов

И вот первый результативный график, говорящий о прямом влиянии масла и трения в двигателе на результат гонки. Это т.н. "растянутость" пелетона в каждом заезде на разных маслах. Подробно мы рассмотрим эту тенденцию при подведении итогов.Рис. 13 Разрыв

Самое время, ответить на назревшие вопросы:

А почему были выбраны именно эти масла?Были выбраны масла четырех ключевых категорий:

  1. "Квалификационное" масло крайне низкой вязкости - 0W20. Его представил продукт от Mobil 1 с вязкостью 0W20.
  2. Загущенное спортивное масло 10W60, предназначенное на работы в крайне интенсивных условиях - такое масло примерно в два раза гуще первого.
  3. Масло со слоистым модификатором трения - представлено Xenum WRX.
  4. Внешний модификатор трения, в качестве эксперимента. В данном случае, была использована одна из комбинаций гидросиликатов с максимально малым временем приработки.

А почему так мало масел?!В тесте представлены все основные категории масел и даже внешний модификатор трения, пускай и приработанный по минимально возможной программе.Вся гонка заняла почти что пять часов. Дальнейшее увеличение хронометража, в рамках одного теста, по разным причинам, невозможно.

А почему была выбрана именно такая последовательность?Сначала проверены два контрастных по вязкости продукта - "Mobil" и "Castrol".Вторым этапом, проверено масло с модификатором и дополнительный внешний модификатор другого принципа действия.С моей точки зрения, это вообще идеально возможная последовательность в рамках указанного эксперимента - взаимовлияния практически нет,что хорошо соотносится с моим опытом и полученными данными.

А что можно сказать про результаты первого заезда?Он был произведен вне общего зачета. Это отправная точка. Я бы рассматривал (и заранее предусматривал) его как "прогревочный" во всех смыслах, включая пилотов. Хотя автомобили (двигатели), формально, были прогреты перед гонкой. Тем не менее, утверждать, что время этого заезда абсолютно и вообще что-то характеризует - я бы не стал категорически.Абсолютное тестирование реально производилось по трем маслам из пяти заездов - Mobil, Castrol, Xenum, плюс бонусный полностью зачетный заезд с модификатором трения.

Теперь переходим к самому интересному: результатам, под которыми я подразумеваю, прежде всего, впечатления самих пилотов. Отзывы предлагаю в порядке возрастания весовой категории:

I-абсолютный результат заездов. Категория 57 кг.<отзыв ожидается>

II-абсолютный результат заездов. Категория 57 кг.Рис. 14 Сергей

Меня зовут Серёга и я пилот команды MADS в проектах Dozor и EnCounter (гонки по городу на легковых автомобилях). Это напрямую не связано с картингом, просто есть любовь к машинам и скорости:) В соревнованиях участвовал только в любительских, трофеев за картинг не имею, что нельзя сказать про "уличные" проекты…

Что касается «10 Дюймов» - да, трасса знакома, проводил много времени на тренировках и просто приезжали с друзьями кататься, так что знание трассы отличное.

Ваше впечатление от изменений в ощущении двигателя в первом заездеДвигатель работает ровно, мягко, результат заезда привычен. 

Ваше впечатление от изменений в ощущении двигателя во втором заездеПодрывает с низов, достаточно резкая работа двигателя

Ваше впечатление от изменений в ощущении двигателя в третьем заездеПонравился больше всего, максимальная отзывчивость педали на все действия. В отличии от второго заезда чуть менее резкий подрыв, но более плавная отзывчивость педали.

Ваше впечатление от изменений в ощущении двигателя в четвертом заездеМашина едет как-то странно, показал лучшее время на этом масле, но охарактеризовать его не могу. Было бы интересно проехать хотя бы часовую гонку на нем.

Ваше впечатление от изменений в ощущении двигателя в пятом заездеЕхал на простом масле с присадкой, ощущения отвратительные, машина не разгоняется. Показать время, которое обычно бывает средним, стоило мне огромных усилий.

Можно ли сказать, что на результаты в каком-либо из проведенных заездов существенно повлияла ваша усталость, или ситуация на трассе?!Нельзя так сказать, катались не долго, усталость минимальная. На трассе все стабильно, те же пилоты, примерно один ритм.

Чтобы вы ответили на вопрос по теме "влияние масла на ощущение двигателя" ДО момента проведения эксперимента (весь ваш жизненный опыт)?До этого, я просто регулярно менял масло в своей машине, лил Motul и не вникал почему, но чувствовал что двигателю хорошо, но опытов не ставил и никогда бы не подумал, что динамика зависит от масла.

Как изменилось (если изменилось) ваше мнение после проведенного эксперимента? Что бы вы могли сказать теперь в дополнение к пункту 7?Изменилось принципиально, хотя я и не буду проводить тесты на своей машине, но теперь осознаю, что на динамику масло тоже влияет.

Среди читателей найдется немало людей, кто совершенно уверен в вашем самовнушении и отсутствии "реальных" впечатлений. Чтобы вы, как реальный участник эксперимента, могли бы им ответить?Я никак не связан с компаниями, производящими масла, мы просто были приглашены, чтобы его протестировать и поделиться впечатлениями. Я бы и сам отнесся скептически к такому тесту, но когда чувствуешь разницу при подрыве машины с места на том или ином масле, при этом машина не меняется - задумываешься.

Если оценивать весь полученный вами в ходе сегодняшнего эксперимента опыт, как бы вы могли в общем и односложно охарактеризовать важность влияния масло на ощущение от работы двигателя: "отсутствует", "едва заметно", "заметно", "очень заметно", "чрезвычайно заметно"«Очень заметно»

Если бы вам завтра пришлось выбирать масло "на гонку", масло из какого заезда вы бы выбрали?Не смотря на интерес к маслу во 2 и 4 заезде, если бы не было возможности их повторно протестировать - остановился бы на третьем.

По вашим ощущениям, если бы вам залили самое "неудачное" масло из опробованных, могло ли бы это существенно повлиять на ваш результат в гонке?В пятом заезде на нас поставили какой-то эксперимент и время значительно ухудшилось, так что однозначно плохое масло заметно испортит результат.

Расставьте проведенные заезды в порядке убывания полезности, начиная с самого лучшего по вашим ощущениям. Например: 1-2-5-3-4. Где 1 - самое лучший по ощущениям заезд. А 4 - самый худший.3,4,2,1,5

Любой ваш комментарий по проведенному эксперименту в свободной формеСпасибо, что пригласили стать участником данного тестирования, это был интересный опыт! Буду рад принять участие в чем-то подобном :)

III-абсолютный результат заездов. Категория 75 кг.Рис. 15 Юрий

Шариков Юрий Алексеевич.Опыт в картинге с 2012 года, автоспорт: «Time Attack с 2008 года», RHHCC и RTAC с 2011 года. Призы за победу в недельных гонках, а также и отдельных марафонах по 90 минут.

Трасса в «10 дюймов» знакома очень и очень сильно. Вкат на ней где-то около полугода и почти через день тренировки с тренером.

Ваше впечатление от изменений в ощущении двигателя в первом заездеОбычные (совершенно привычные) ощущения без каких-либо прибавок, стабильность работы и хороший разгон.

Ваше впечатление от изменений в ощущении двигателя во втором заездеВозможно эффект плацебо, но показалось, что есть изменение в эластичности работы мотора, но без какого-то заметного эффекта улучшения.

Ваше впечатление от изменений в ощущении двигателя в третьем заездеВ этом заезде как раз создалось впечатление, то что карт стал разгоняться очень и очень хорошо с низких оборотов и выходить на высокие.

Ваше впечатление от изменений в ощущении двигателя в четвертом заездеВ этом заезде карт не ехал почти, очень медленные разгоны и затуп на низких оборотах, работа двигателя чуть не устраивала для демонстрации результатов и высокой скорости прохождения трассы.

Ваше впечатление от изменений в ощущении двигателя в пятом заездеВ последнем заезде карт ехал примерно также как и в 3 заезде - была эластичность, но скорость набора оборотов и подрыв карта на высоких был заметен как очень хороший, карт полностью устраивал в мощности.

Можно ли сказать, что на результаты в каком-либо из проведенных заездов существенно повлияла ваша усталость, или ситуация на трассе?!Усталость была, скорее, в 4 заезде, когда приходилось карту давать пинка для набора с низких скоростей и он очень тяжело выходил на обороты.

Чтобы вы ответили на вопрос по теме "влияние масла на ощущение двигателя" ДО момента проведения эксперимента (весь ваш жизненный опыт)?Масло бывает убирает КПД двигателя на приличный процент - от 5% до 15%. Один раз я выявил потерю мощности двигателя, когда участвовал в соревнованиях RHHCC в 2012 году. Залил вместо привычного масла, масло другого типа. После поехал на замеры и удивился потере мощности - машина попросту не ехала. Думаю, что это также применимо ко всем двигателям.

Как изменилось (если изменилось) ваше мнение после проведенного эксперимента? Что бы вы могли сказать теперь в дополнение к пункту 7?Безусловно, нужен правильный подбор масла для двигателя. 

Среди читателей найдется немало людей, кто совершенно уверен в вашем самовнушении и отсутствии "реальных" впечатлений. Чтобы вы, как реальный участник эксперимента, могли бы им ответить?Произвести замеры на стенде и показать уже точные цифры для подтверждения фактов о потере мощности только что залито не очень хорошее масло.

Если оценивать весь полученный вами в ходе сегодняшнего эксперимента опыт, как бы вы могли в общем и односложно охарактеризовать важность влияния масло на ощущение от работы двигателя: "отсутствует", "едва заметно", "заметно", "очень заметно", "чрезвычайно заметно"«Заметно».

Если бы вам завтра пришлось выбирать масло "на гонку", масло из какого заезда вы бы выбрали?Выбрал бы масло из 3 заезда и из последнего, пятого.

По вашим ощущениям, если бы вам залили самое "неудачное" масло из опробованных, могло ли бы это существенно повлиять на ваш результат в гонке?Всегда влияет на то, как карт едет, разрывы как правило между 1,2,3 местами составляют 2-6 секунд - за 40 минут гонки. Первое место можно потерять из-за десятых долей секунды – это как раз может быть по вине неудачного масла.

Расставьте проведенные заезды в порядке убывания полезности, начиная с самого лучшего по вашим ощущениям. Например: 1-2-5-3-4. Где 1 - самое лучший по ощущениям заезд. А 4 - самый худший3-5-2-1-4

Любой ваш комментарий по проведенному эксперименту в свободной формеХотел поблагодарить, за предоставленную возможность поучаствовать в данном эксперименте. Было очень и очень увлекательно.

IV-абсолютный результат заездов. Категория 83 кг.Рис. 16 АлександрАлександр Ботвинов, автомеханик. Неоднократный призер любительских соревнований, в основном – картинг.

Ваше впечатление от изменений в ощущении двигателя в первом заездеОбычное, вполне привычное ощущение.

Ваше впечатление от изменений в ощущении двигателя во втором заездеБолее жесткий звук работы, ощущение более жидкого масла… По скорости серьезных изменений я не почувствовал.

Ваше впечатление от изменений в ощущении двигателя в третьем заездеСамые лучшие ощущения, ощущения от ускорения получше.

Ваше впечатление от изменений в ощущении двигателя в четвертом заездеСлетел тросик газа, не удалось толком понять.

Ваше впечатление от изменений в ощущении двигателя в пятом заездеВроде бы как и первый, вполне обычные ощущения. Но они немного смазались после неудачного предыдущего заезда.

Можно ли сказать, что на результаты в каком-либо из проведенных заездов существенно повлияла ваша усталость, или ситуация на трассе?!Определенно нет.

Чтобы вы ответили на вопрос по теме "влияние масла на ощущение двигателя" ДО момента проведения эксперимента (весь ваш жизненный опыт)?Были личные эксперименты с американской присадкой STP для автомобильных моторов. Была отмечена мягкость работы и даже увеличение компрессии.

Как изменилось (если изменилось) ваше мнение после проведенного эксперимента? Что бы вы могли сказать теперь в дополнение к пункту 7?Безусловно, серьезно меняется ощущение от двигателя.

Среди читателей найдется немало людей, кто совершенно уверен в вашем самовнушении и отсутствии "реальных" впечатлений. Чтобы вы, как реальный участник эксперимента, могли бы им ответить?Для того чтобы понять, нужно попробовать самостоятельно.

Если оценивать весь полученный вами в ходе сегодняшнего эксперимента опыт, как бы вы могли в общем и односложно охарактеризовать важность влияния масло на ощущение от работы двигателя: "отсутствует", "едва заметно", "заметно", "очень заметно", "чрезвычайно заметно"«Заметно».

Если бы вам завтра пришлось выбирать масло "на гонку", масло из какого заезда вы бы выбрали?Третьего.

По вашим ощущениям, если бы вам залили самое "неудачное" масло из опробованных, могло ли бы это существенно повлиять на ваш результат в гонке?Да, конечно. Чисто технически это сказалось бы на результате.

Расставьте проведенные заезды в порядке убывания полезности, начиная с самого лучшего по вашим ощущениям. Например: 1-2-5-3-4. Где 1 - самое лучший по ощущениям заезд. А 4 - самый худшийТак как была техническая неполадка, то по ощущениям выбираю 3 заезд. Остальные по этой причине сложно расставить. 

Итоговые результаты тестирования :

Рис. 17 Зависимость среднего времени круга

Понять этот график очень просто: стабильность движения каждого пилота в гонке, при условии, что он не саботирует заезд и не утомлен, должна быть чрезвычайно высокой. Соотношение между разными пилотами после такого многоаспектного усреднения, должно быть практически идеальным и зависеть только от массы и мастерства (возможно и от индивидуальных, но неизменных особенностей автомобиля).

Выше приведены несколько проверочных критериев, которые не дают возможности усомниться в чистоте проведенного эксперимента, но теперь мы наблюдаем выраженную аномалию.

Чтобы рассмотреть эту тенденцию получше, построим те же самые данные в другом виде:Рис. 18 Влияние модификаторов трения

Хорошо заметно, что соотношение между гонщиками в первых трех заездах практически идеально ровное.

Все разрывы визуально почти идентичны, несмотря на то, что абсолютные цифры немного растут - все пилоты едут немного лучше вплоть до третьего заезда. Третий заезд практически не отличается от четвертого и пятого по среднему времени.

Смотрите на вершину фигуры - Motul. Даже при полной "непрогретости" эта тенденция уже очевидна. На масле Mobil во втором заезде, разрыв вообще эталонный - видно, что зависимость результата от массы даже физически правильная - не совсем линейная. Третий заезд - примерно тоже самое. А вот четвертый заезд (масло с модификатором, XENUM) уравнивает гонщиков тяжелой весовой категории, не помешал даже тот факт, что один из картов сделал меньше зачетных кругов. Пятый заезд, с внешним модификатором, вообще поломал всю картину - три пилота выдали практически один и тот же средний результат, хотя основной фокус нужно сделать на тяжелую группу пилотов - 75 и 83 кг...

Тестирование организовано на базе картинг-клуба:Рис. 19 Картинг-клуб

FAQ:1.А что это было вообще?Взяли четыре зачетных карта и четыре масла, плюс дополнительный модификатор трения. Откатали пять заездов примерно по 50 кругов. За рулем были профессиональные картингисты. Карты были одинаковыми. Все что вообще можно было уровнять, уровняли и усреднили.

2.И что в результате?Масла с модификаторами трения позволяют "тяжелым" пилотам догонять "легких". Как раз тот случай, когда нужна и влияет "эластичность" двигателя. Двигатель и его обороты, это примерно как шарик на резинке - чем тяжелее шарик, тем больше его амплитуда при его раскачивании в разные стороны. С "модификатором" тяжелый шарик имеет как бы меньшую инерцию. Это примерно как взять более тугую резинку. Ну или высверлить в шарике центр: смотрится как тяжелый, а ведет себя как легкий. Результат работы модификатора будет тем заметнее, чем больше прибавка в массе. Считается, что "лишние" десять килограммов на этой трассе дают 0,1 с потери времени. Разница между контрольными группами составила примерно 26 кг. Можно посмотреть, насколько модификаторы подтянули результаты тяжелой группы пилотов...

3.Почти все пилоты, если читать отзывы, отметили негативные тенденции при использовании масла Xenum. Вроде как машина не набирает обороты.И это при том, что и средний и абсолютный результаты заездов были лучшими наряду с маслом Castrol. Посмотрите графики и результаты, а также начало статьи, где есть пример с гонками "Formula 1". Любой модификатор трения заметно влияет на звук двигателя и выхлопа. В карте, пилот сидит буквально на моторе и выхлопной системе. Тахометра и спидометра в нем нет. Обороты и "раскручивание" воспринимаются исключительно "на слух". Т.к. двигатели начинают звучать по-другому, пилот акустически дезориентируется. Это хорошо заметно на треке, если наблюдать за заездом со стороны... Совершенно противоположные ощущения были отмечены на жидком масле Mobil - двигатель раскручивался "злее", потому как "металла" в звуке добавилось. Это еще один отличный факт в пользу того, что эксперимент был полностью объективным.

4.Второй пилот легкой категории заметно ухудшил результат на модификаторе трения. Почему?!Ранее уже сказано, что выбор геомодификатора был обусловлен малым временем приработки. Время зависит и от величины дозировки препарата. С этим картомя вполне мог промахнуться с дозировкой - все делалось в условиях лимита времени. Три других показали стабильное дополнительное улучшение или же стабильность результата. Но главное в другом: абсолютный результат заезда одного пилота никак не относится к полученным данным.

5.Какой модификатор трения был использован?Геомодификатор. Я не использую товарные препараты. Геомодификаторов на рынке десятки, если не сотни(!) наименований. Можно пробовать любой. Все работают по-разному. Исследование конкретного товарного образца (и тем более - сравнительное) - огромная работа, не меньше этой. Гугл в помощь по ключевым словам...

6.А что можно сказать про масло Castrol?На этом масле большинство пилотов показало отличные (и лучшие в абсолюте, если рассматривать сотые доли секунды) результаты. Причина это, очевидно, заключается в том простом факте, что пленка этого заведомо густого масла заметно снижала граничное трение "металл-металл". Что особенно почувствовалось на фоне более жидкого масла от Mobil. Это, разумеется, дает повод предположить, что для условий смазки "разбрызгиванием", без маслонасоса и системы орошения распредвалов, такой вариант и теоретически и практически очень любопытен. Стоит попробовать, иными словами.

7.А что можно сказать про масло Mobil?Почти всеми пилотами отмечен более "металлический" звук работы двигателя, что совершенно ожидаемо. Результаты на этом масле совершенно обычные.Что, между прочим, заставляет подумать над тем, имеет ли смысл использовать чрезвычайно разжиженные масла для квалификации. Это мировая практика с полным отсутствием аргументов "за". Все супержидкие масла почему-то называются "квалификационными". Удивительно, что возможные потери на прокачивание не сопоставляются с очевидным увеличением контактного трения металл-металл, что и слышно и видно по результатам!

Рис. 20 Уонн-уонн

Источник: bmwservice.livejournal.com

takemake.ru

Модификаторы трения II: bmwservice

Ну что же, от довольно "примитивных" (но эффективных) по действию модификаторов трения типа "антифрикционная пудра", перейдем к чему-то более интересному. Но перед тем, как мы продолжим разговор, хочу еще раз возвратиться к теме мелкодисперсных модификаторов, для этого еще раз напомню принцип их действия (смотрим картинку):

Думаю, вам очевидно, что для эффективного действия подобного препарата, он должен содержаться в масле в достаточно заметном объеме: пропорционально площади поверхностей трения. Грубая прикидка на площадь контактного трения и потребную глубину заполнения неровностей во всем двигателе, дает, на самом деле, величины очень скромные. При средней глубине шероховатости по 8-9 классу (заведомо менее 1 мкм), требуемый объем сыпучего модификатора не превосходит величину 1 куб.см - это совсем немного. Но даже если вы хотя бы раз видели хим.состав подобных продуктов (многократно здесь публиковавшийся), то должны помнить, что концентрация "агента снижения трения" составляет величину около 0,5-2 г на каждый килограмм масла. В типичном двигателе содержится примерно1 кг масла на цилиндр. Это значит, что не менее типичная "индустриальная норма" модификаторов трения составляет величину до 6x2=12 г модификатора трения на весь мотор. Еще около 4 г "на цилиндр" - добавят элементы обычных присадок, среди которых тоже есть антифрикционная присадка ZDDP.

В сухой массе это немало, примерно вот столько:

Объяснение этому факту довольно простое: "усвояемость" присадки (присутствие ее в паре трения) отнюдь не абсолютная. Хотя поверхностная активность некоторых препаратов действительно может быть довольно высокой, но это совсем не значит, что все частицы полностью и без остатка оседают на металле. Запас их был и будет всегда: большая часть так и продолжает плавать в масле.

Кстати, "сухое количество" самой распространенной присадки ZDDP в маслах пусть и медленно, но неуклонно снижается. К этому обязывает введение все новых и новых экологических стандартов:

Но даже сейчас (когда "BMW LL-04" и подобные "современные нормы" уже сложно назвать новыми) можно совершенно уверенно утверждать: резервы для снижения еще велики. Например, заметное действие того же MoDTC проявляется при концентрациях не более 500 ppm - 0,5 г/кг. Чтобы в этом удостовериться, достаточно воспользоваться поисковиком, или же купить любое из масел с этим довольно распространенным модификатором.

Итак, при попытке оценить количественный состав соразмерно объему масла, мы вышли на примерно такое соотношение: присадка типа "пудры" является достаточно эффективной уже при концентрации не более 0,05-0,1% от объема масла. Приобретя всего 5-10 г подходящего препарата, вы уже сможете получить какое-то практическое представление об эффекте, ну или же продолжить безвозмездно общаться (а лучше - спорить и доказывать) с теми, кто уже опробовал нечто подобное на своем личном автомобиле.

Попутно отвечу на очередной "важный" вопрос, степень важности которого затмевает даже разум некоторых ретивых консерваторов: что же будет, когда частицы забьют "сетку хона". К счастью, глубина маслоудерживающего слоя как в хонингованных гильзах, так и в современных "алюсиловых" ("силумаловых") блоках составляет величину не менее чем на два-три порядка большую среднего размера модифицирующих трение частиц. То, что в вашем сознании должен сделать такой "модификатор" с "ландшафтом" стенки цилиндра, в действительности представляет собой не более, чем вот это:В то время, как вы совершенно напрасно ждете вот этого:

Так что забудем очередную байку и перейдем к делу.

Около двух лет назад, ко мне обратились представители компании, созданной вокруг оригинального изобретения: русским ученым М.В.Провоторовым был найден способ синтеза и улавливания в жидкой среде крайне малых частиц высокоактивной формы углерода. Компания существует уже несколько лет, но область применения изобретения до сих пор имела весьма отдаленное отношение к автомобилям и моторным маслам. Желающие могут найти время ознакомиться с индустриальными перспективами применения вот тут:

Разумный вопрос (от тех, кто уже открывал ссылку на патент) - нафиг мне это читать о чем речь-то вообще и причем тут моторные масла? А дело вот в чем: как уже сказано выше, были получены и стабилизированы в жидкой нейтральной среде особо малые частицы активной формы углерода, т.н. "наноалмазы"- вещество с крайне высокой удельной поверхностной энергией. Средний размер полученных частиц (и их массивов) не превышает величину в 0,8 нм. И это очень хорошо, так как формально позволяет мне использовать экзотическую величину "пикометр" и "пикоалмаз", вместо надоевшего сколковского "нанометр" и "наноалмаз".

Последовательно читающий статью автолюбитель уже, вероятно, даже предположил, что по сути, наверное, это тоже самое, что и вышерассмотренная более крупная "антифрикционная пудра". Ну и что с того, что наши металлические "неровности" в паре трения покроет более мелкий порошок - очевидно же, что после достижения определенного предела, эффективность уже не будет расти столь стремительно, а нюхать его все равно бестолку.

Думаю, что такое предположение в общем-то справедливо, но оно не верно, по крайней мере, в нашем случае.

Дело в том, что механизм действия подобного вещества, после введения жидкую среду типа "масло моторное" (ну и не только), радикально отличается от поверхностных модификаторов трения и состоит в т.н. структурировании молекул среды вокруг объектов с высокой поверхностной энергией. Подобно тому, как например, Солнце "структурирует" вокруг себя Солнечную систему:

Ну или вот вам еще пример "неструктурированный среды":

с последующим структурированием нескольких тысяч зрителей вокруг судьбы несчастного животного:

Разумеется, помимо быка, это могла бы сделать и женщина.На фото некая блондинка, структурировавшая разом целый взвод фотографов:

Разглядеть аналогию можно рассмотрев однородную среду, подобную маслу, под микроскопом.

Вот вид жидкости до...

и после введения препарата:

рассмотрим полученную структуру укрупненно:

Как видно, в результате образовался сфероподобный подвижный объект размером примерно 300-400 нм, целиком состоящий из молекул среды - в нашем случае - моторного масла. И формирует (удерживает) его тот самый энергетически активный "центр", в виде частицы углерода размером всего около 0,8 нм.

В нейтральной среде, сама частица выглядит вот так (темные точки на фотографии):

Непосредственно после добавления таких частиц в масло, начинается процесс формирования (группирования) вокруг них молекул, из которого само масло и состоит.Процесс развивается следующим образом (слева направо):

Вот аналогия происходящего:

Ну или вот (для женщин):

Результат:Для ценителей футбола и футболистов представлена почти 3D модель процесса:

Снова вспоминаем картинку из самого начала статьи.

В отличие от порошковых модификаторов, механизм действия "структурированного масла" будет выглядеть совершенно иначе:

Помните, какие цифры концентрации препарата типичны для порошковых модификаторов? Как вы думаете, какая концентрация вводимых "центров" актуальна для препарата такого рода?Какие последствия ожидаемы и как можно было бы их оценить, измерить и испытать? Мы потратили на это более двух лет и вот что придумали...

(Ну а дальше начинается все самое интересное, разумеется. Ждем следующей статьи.)

bmwservice.livejournal.com

Модификатор - трение - Большая Энциклопедия Нефти и Газа, статья, страница 1

Модификатор - трение

Cтраница 1

Модификаторы трения в загущенных маслах действуют более эффективно, чем в незагущенных.  [1]

Модификаторы трения, или антифрикционные присадки, вводят в состав энергосберегающих моторных масел, обеспечивающих экономию топлива путем снижения трения и повышения КПД двигателей. Обычно используют твердые тонко диспергированные дисульфид молибдена, коллоидальный графит, политетрафторэтилен, ацетаты и бораты металлов, а также маслорастворимые эфиры жирных кислот и органические соединения молибдена. Механизм действия основан на адгезии твердых частиц на смазываемых поверхностях и образовании сплошного слоя с низким коэффициентом трения.  [2]

Применение модификаторов трения было предусмотрено в так называемых энергосберегающих маслах, разработанных в России и за рубежом.  [3]

Разработки модификаторов трения для топлив в России почти не проводились ( за исключением присадки комплексного действия МТ-3) и поэтому их влияние на топлива и материал двигателей исследовано недостаточно. Использование модификаторов трения, предназначенных для масел, не может быть рекомендовано. Тем не менее мы рассмотрим этот вопрос, так как у потребителей топлив он вызывает большой интерес.  [4]

ФФ Минеральное масло Содержит специальные модификаторы трения и противоизносные присадки ф Обеспечивает отличную защиту шестерен от изнашивания и выкрашивания Снижает осевой шум Предотвращает коррозию ф Продлевает срок службы узлов.  [5]

С химической точки зрения, модификаторы трения представляют собой органические или неорганические соединения, которые высаживаются из масла или топлива на поверхности трущихся деталей и образуют на них пленку с очень низким коэффициентом трения, устойчивую к действию высоких температур, нагрузок и агрессивных сред, в частности воды и смазочного масла.  [7]

В полусинтетические масла вводятся эффективные антифрикционные присадки ( модификаторы трения), что способствует повышению работоспособности масла в зоне высоких температур ( цилиндро-поршневая группа), повышает противоизносные свойства масел.  [8]

По-видимому, наиболее целесообразно объединять оба пути, вводя модификаторы трения в загущенные масла.  [9]

Для снижения трения в масла вводят антифрикционные присадки - модификаторы трения. В качестве таких присадок используют различные маслорастворимые ПАВ, например, соли длинноцепочных органических кислот.  [10]

Это предполагает долгосрочную стабильность реологических свойств масла и способность модификаторов трения сохранять эффективность в процессе работы.  [11]

Подготовлены к внедрению новые присадки так называемого антифрикционного действия - модификаторы трения, ранее не применявшиеся в отечественной практике. Они обеспечивают, как показали результаты испытаний и зарубежный опыт использования, до 5 % и более экономии нефтяного топлива. Завершены технологические разработки по новому классу присадок многофункционального действия, представляющих собой сверхщелочные серосодержащие алкилфеноляты щелочноземельных металлов. По эффективности они значительно превосходят такие присадки, как ВНИИ НП-360, ЦИАТИМ-339, и могут служить альтернативой дорогостоящим ал-килсалицилатным присадкам в моторных маслах и других смазочных материалах.  [12]

Минеральные масла ф Изготовлены на основе парафиновых базовых масел с добавлением пакета присадок 4 - Содержат модификатор трения Предотвращают шум и вибрации, возникающие при прерывистой пробуксовке Обладают высокими антипенными, низкотемпературными и антиокислительными свойствами ф Совместимы с уплотнительными материалами.  [13]

Синтетическое универсальное всесезонное масло Изготовлено на основе полностью синтетического базового масла и пакета присадок ф Содержит усовершенствованные модификаторы трения, благодаря чему снижается расход как масла, так и топлива Обладает оптимальными вязкостными характеристиками.  [14]

В настоящее время получили широкое распространение загущенные масла, вязкостные характеристики которых и наличие в них модификаторов трения позволяют получить ощутимую экономию топлива.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Модификаторы трения - Справочник химика 21

    В качестве модификаторов трения применяют коллоидные дисперсии не растворяющихся в масле соединений (дисульфид молибдена, графит). Однако наибольшие перспективы применения (вследствие образования более стабильных растворов) имеют маслорастворимые соединения, среди которых наивысшую эффективность проявляют маслорастворимые соединения молибдена (МСМ) [279]. К настоящему времени механизм действия МСМ изучен мало и может быть сформулирован лишь в виде гипотез. Предполагается, что взаимодействие МСМ с поверхностями трения протекает по типу пластической деформации с образованием эвтектической смеси, обладающей пониженной температурой плавления. Последняя обеспечивает невысокие значения коэффициента трения. [c.264]

    В последние годы особый интерес приобретают такие добавки к смазочным маслам, которые могут снижать не только износ, но и трение сопряженных пар. Такое сочетание свойств имеет большое значение, поскольку благоприятно сказывается на энергетических показателях двигателя, что в конечном счете позволяет сократить расход топлива за счет снижения потерь мощности на трение. За рубежом соединения такого типа получили название модификаторов трения или присадок, снижающих трение в отечественной литературе их называют высокотемпературными антифрикционными присадками. [c.264]

    Расход энергии на преодоление трения составляет значительную часть общего расхода энергии, поэтому возможностям уменьщения трения уделяется большое внимание. Введение в моторное масло присадок повышающих липкость или модификаторов трения приводит к уменьшению коэффициента трения и усилению адсорбционной пленки на трущихся поверхностях деталей, что позволяет применять масла с пониженной вязкостью и уменьшать расход топлива на преодоление трения. [c.52]

    В состав жидкостей для автоматических коробок передач, как правило, входят антиокислители, ингибиторы пенообразования, противоизносные присадки, модификаторы трения и набухания уплотнений. В целях идентификации их окрашивают в красный цвет. [c.135]

    Принцип действия. С химической точки зрения, модификаторы трения представляют собой органические или неорганические соединения, которые высаживаются из масла или топлива на поверхности трущихся деталей и образуют на них пленку с очень низким коэффициентом трения, устойчивую к действию высоких температур, нагрузок и агрессивных сред, в частности воды и смазочного масла. [c.176]

    Применение модификаторов трения было предусмотрено в так называемых энергосберегающих маслах, разработанных в России и за рубежом. [c.175]

    Катастрофический износ, наблюдаемый в двигателях из-за местного сваривания и разрушения мест сварки. Его можно предотвратить использованием противоизносных, противозадирных присадок и модификаторов трения. [c.5]

    Другим противоречием при формировании состава масла является наличие противоизносной присадки, во многих случаях понижающей коэффициент трения. Поэтому в некоторых спецификациях на масла для гидромеханических передач подчеркивается наличие или отсутствие модификаторов трения. [c.201]

    Новая пластичная смазка содержит дополнительно нефтяную полярную фракцию ПФ-1 и эффективно работает в широком диапазоне температур. В рецептуре смазки стеарат лития выполняет роль загустителя минерального масла, дифениламин является антиокислительной присадкой, дисульфид молибдена — модификатор трения, нефтяная полярная фракция модифицирует коллоидную структуру пластичной смазки, повышая одновременно функциональное действие каждого компонента системы. [c.280]

    Твердые высокотемпературные модификаторы трения, не растворимые в масле, обеспечивают смазочное действие (антифрикционное, противоизносное, противозадирное) в жестких режимах трения, когда жидкие масла не способны предотвращать металлический контакт. К таким материалам относят дисульфид молибдена, графит, слюду, нитрид бора, политетрафторэтилен. [c.963]

    Весьма перспективны для защиты от различного вида коррозионно-механического износа присадки на основе соединений молибдена [126-142], Работы по созданию молибденсодержащих присадок получили развитие в последние годы в связи с проблемой экономии топлива за счет снижения потерь энергии на трение [127, 128], Предложены различные соединения молибдена, обеспечивающие антифрикционный эффект, - модификаторы трения, среди которых лучшие результаты получены для молибденсодержащих присадок на основе дитиофосфорных кислот [126-133, 136-139, 143], [c.66]

    Модификаторы трения используются главным образом в маслах и очень редко - 1) топливах (по усмотрению потребите- [c.175]

    Ограничения и недостатки. Разработки модификаторов трения для топлив в России почти не проводились (за исключением присадки комплексного действия МТ-3) и поэтому их влияние на топлива и материал двигателей исследовано недостаточно. Использование модификаторов трения, предназначенных для масел, не может быть рекомендовано. Тем не менее мы рассмотрим этот вопрос, так как у потребителей топлив он вызывает большой интерес. [c.177]

    При небольшой концентрации вносимого с присадкой молибдена образующийся защитный слой недостаточен, что и проявляется в повышенном износе деталей. При повышении концентрации модификатора трения до 3-5% износ постепенно снижается до минимума. Вместе с тем нельзя полагать, что чем больше модификатора трения в масле, тем лучше. При слишком высокой его концентрации повышается коррозионная активность моторных масел и снижается их химическая ста- [c.177]

    Моторные масла, относящиеся к одному и тому же классу API, но производимые разными фирмами, могут существенно отличаться по составу базовых масел, типам используемых присадок и, следовательно, иметь специфические свойства, удовлетворять предъявляемые требования близко к предельным значениям или иметь запас качества. При выборе аналога по области применения и уровню эксплуатационных свойств обязательно должны быть приняты во внимание все специальные требования к моторному маслу со стороны изготовителя техники (например, ограничения по сульфатной зольности, отсутствие или, напротив, наличие определенного количества цинка, отсутствие в составе масла растворимьк модификаторов трения, содержащих молибден и т.п.). [c.139]

    В качестве модификаторов трения применяют коллоидные дисперсии нерастворимых в масле соединений (дисульфида молибдена, графита). Однако перспективы применения вследствие образования более устойчивых растворов имеют маслорастворимые соединения. Среди этих соединений наибольшую эффективность проявляют маслорастворимые соединения Мо. [c.211]

    Снижение трения в двигателях достигается как за счет конструктивных изменений, так и за счет улучшения антифрикционных свойств самих масел. В свою очередь, в зависимости от режима смазки последнее достигается либо регулированием вязкости масел (уменьшение внутреннего трения) при рабочей температуре, либо использованием в маслах антифрикционных присадок — модификаторов трения (уменьшение внешнего трения).  [c.228]

    Не исключается также комбинированный способ — изменение (снижение) вязкости моторного масла с одновременным введением в его состав модификаторов трения. [c.228]

    Присадки, улучшающие смазочные свойства (модификаторы трения, антифрикционные, фрикционные, противоизносные, противозадирные, повышающие липкость, антипиттинговые, металлоплакирующие и др.)  [c.26]

    RES.22.0L G4, масла для бензиновых двигателей, соответствующие спецификации M G4 всесезонные, с вязкостями SAE 5W-..., 10W-.,., 20W-..., 25W-... для масел с модификаторами трения необходима проверка работы со синхронизаторами  [c.94]

    На основании проведенных исследований была предложена для использования в различных узлах трения рецептура пластичной смазки с улучшенными высокотемпературными антифрикционными, противоизносными и противозадирными свойствами. Известная смазка подобного типа содержит стеарат лития, дифениламин, дисульфид молибдена, базовое масло. Однако указа1П1ая композиция отличается невысоким уровнем антифрикционных и противоизносных свойств при температурах выше 100°С. Кроме того, при высоких концентрациях модификатора трения — дисульфида молибдена, ухудшаются защитные свойства и механическая стабильность смазки. [c.280]

    RES.22.0L PD2/D5, масла для дизельных двигателей, соответствующие спецификациям M PD2 и D5 для масел с модификаторами трения необходима проверка работы со синхронизаторами. [c.94]

    Мотоциклы с четырехтактными двигателями. Для этих двигателей применяются автомобильные масла для бензиновых двигателей (API SF, SG, SH, SJ A EA A2, A3 или M G4, G5), но к ним предъявляются дополнительные требования относительно фрикционных свойств, так как в одном агрегате с двигателем мотоцикла имеется фрикционный механизм сцепления. Масло должно обеспечить хорошее сцепление и не допустить проскальзывания. Для этой цели непригодны маловязкие и энергосберегающие масла, содержащие присадки - модификаторы трения, понижающие коэффициент трения. [c.122]

    Для обеспечения надежной эксплуатации двигателей и снижения износа при работе на чистых спиртах необходимы специальные моторные масла. Для этой цели разработаны масла марок ELA-5046 и ELA-5048, содержащие сверхщелочной сульфонат кальция, диалкилдитиофосфат цинка и модификатор трения. Оба масла испытаны в таксомоторном парке (г. Сан-Пауло, Бразилия) со сроком смены 20 и 10 тыс. км пробега для первой и второй марки масла соответственно. Использование указанных масел обеспечило безотказную работу двигателей на чистом этаноле после пробега 60 тыс. км повышенного износа отмечено не было [155]. [c.154]

    Удовлетварение этих требований достигается за счет оптимизации вязкости масла во всем диапазоне рабочих температур двигателя и применения для снижения трения специальных присадок-модификаторов трения (типа коллоидального графита, дисульфидмолибдена и т. п.). [c.27]

    В свою очередь перевод автомобилей в эксплуатации с масла SAE 30 на масло SAE 20W уменьшает расход топлива на 3,5 %, а переход с масла SAE 30 на SAE 10W — на 6 %. В настоящее время получили широкое распространение загущенные масла, вязкостные характеристики которых и наличие в них модификаторов трения позволяют получить ощутимую экономию тоил ива. Например-, по сравнению с товарными загущенными маслами класса вязкости SAE 10W/40 использование масел Мобил 1 (синтетическое — SAE 5W/20), Блек Голд (SAE 10W/40 с дисульфидмолибденом), Ар КО Графит (SAE 10W/40 с коллоидальным графитом) снижает расход топлива на 4—5%. [c.27]

    Ассортимент. Модификаторы трения к применению в отечественных топливах не допускались. Вообще подлежит сомнению целесообразность их введения в топливо, но некоторые автовладельцы на свой страх и риск добавляют в топливо присадки, предназначенные для использования в моторных маслах, что заставляет нас уделить этому вопросу некоторое внимание. Среди присадок этого типа по составу выделяются две практически значимые группы, содержащие в качестве активных компонентов соединения молибдена и перфторирован-ные полиалканы. [c.176]

    Антифрикционный эффект, обеспечиваемый модификаторами трения, обусловлен специфическим строением поверхностных пленок, формируемых в процессе трения, и не всегда сочетается с противоизносным и противозадирным эффектом 129,136,1393. Вместе с тем присадки на основе дитиофосфатов молибдена показали высокое противопиттин-говое действие в трансмиссионных и моторных маслах [107-110, 137-139]. [c.67]

    За рубежом соединения подобного тийа получили название модификаторов трения , или присадок, снижающих трение в отечественной литературе их называют высокотемпературными антифрикционными присадками . [c.211]

    ТНАМ) или их продуктов и смесей. Эти соединения особенно эффективны в качестве ингибиторов коррозии и поверхностно-активных присадок к бензину в трансмиссионных маслах для коробок передач в качестве модификатора трения и ингибитора коррозии в смазках различного назначения как средства, препятствующего осмолению ингибитора коррозии и модификатора трения, а также в качестве ингибиторов коррозии для сплавов, содержащих медь. Область применения этих присадок в значительной степени зависит от молекулярной массы. [c.140]

    Композиция масел, используемых в этих процессах, включает в себя а) вязкое смазочное масло и б) эффективно действующие количества одного из следующих веществ 1) алкенилсукцинамид 2) соль дитиофосфорной кислоты с металлами II группы 3) модификатор трения 4) соль углеводородсульфоновой кислоты с металлами II группы 5) хлорированный олефин, содержащий от 15 до 50 атомов углерода, с содержанием хлора от 20 до 60 % (по массе) с температурой кипения 150°С. Эти композиции используются в качестве рабочей жидкости в гидравлических системах, для смазки трущихся поверхностей. Эти жид- [c.146]

    Патент США, № 4010106, 1977 г. Описываются жидкости, состоящие из а) вязкого смазочного масла и б) необходимых количеств следующих компонентов 1) алкенилсукцинимида, 2) соли дикарбоновой дитиофосфорной кислоты с металлом II группы, 3) модификатора трения, 4) основного сульфированного алкилфенолята щелочноземельного металла и 5) хлорированного олефина, содержащего от 15 до 50 атомов углерода, содержащего от 20 до 60 % по массе) хлора, с температурой кипения 150°С. [c.147]

    Подготовлены к внедрению новые присадки так называемого антифрикционного действия — модификаторы трения, ранее не применявшиеся в отечественной практике. Они обеспечивают, как показали результаты испытаний и зарубежный опыт использования, до 5 % и более экономии нефтяного топлива. Завершены технологические разработки по новому классу присадок многофункционального действия, представляющих собой сверхщелочные серосодержащие алкилфеноляты щелочноземельных металлов. По эффективности они значительно превосходят такие присадки, как ВНИИ НП-360, ЦИАТИМ-339, и могут служить альтернативой дорогостоящим ал-килсалицилатным присадкам в моторных маслах и других смазочных материалах. [c.11]

    В настоящее время наряду с традиционными группами присадок все большее распространение в производстве масел в Японии получают модификаторы трения. В Японии детергентно-диснерги-рующие присадки представлены главным образом алкилфенолятами кальция, сульфонатами (бария, кальция и магния), сукцинимидны-ми и бензиламинными присадками. В качестве антиокислителей широко используются фенольные соединения и дитиофосфаты цинка [103]. [c.75]

chem21.info


Смотрите также

  • Масло моторное из природного газа
  • Ниссан альмера g15 моторное масло
  • Моторное масло для турбированных двигателей
  • Масло моторное для киа спортейдж
  • Объем моторного масла ваз 2107
  • Замена моторного масла ниссан масла
  • Моторное масло для меган 2
  • Моторное масло для дэу нексия
  • Моторное масло для ваз 2110
  • Когда заливать полусинтетическое моторное масло
  • Зимнее моторное масло для ваз
e30d609a