Индекс вязкости масла трансмиссионного


Вязкозть, типы и характеристики трансмиссионных масел. Индекс вязкости масел

Индекс вязкости масла — это составная величина, иллюстрирующая изменение вязкости масла с изменением окружающей температуры. Попробуем разобраться, зачем нужно знать индекс вязкости обычному автовладельцу, отчего и зачем меняется вязкость моторного масла.

Вязкость моторного масла, во-первых, является показателем его смазывающих свойств, так как от вязкости зависит качество смазывания, распределение масла на поверхностях трения и, тем самым износ двигателя.

Во-вторых, от вязкости зависят потери энергии при работе двигателя. Чем выше вязкость, тем толще масляная пленка и надежнее смазывание, но тем больше потери мощности на преодоление жидкостного трения.

Простым языком, понятным автолюбителю, можно сказать так: вязкость трансмиссионного масла – это его способность оставаться на поверхности внутренних деталей мотора и при этом сохранять текучесть. Не сложно? Но ведь именно вязкость масла более всего меняется в зависимости от температуры, являясь «переменной» величиной?

Именно поэтому, Американской ассоциацией автомобильных инженеров (SAE) разработана классификация моторного масла по вязкости, которая описывает вязкость трансмиссионного масла того или иного автомобильного масла при разных рабочих температурах. По существу, эта классификация дает диапазон температур, в котором работа двигателя является безопасной, при условии, что производитель мотора допустил моторное масло с такими параметрами к использованию в этом двигателе.

Сам индекс вязкости - это безразмерная величина, т.е. не измеряется в каких-либо единицах, это просто условное число. Чем выше индекс вязкости моторного масла, тем в более широком температурном диапазоне масло обеспечивает работоспособность двигателя.

Другими словами, чем выше индекс вязкости масла — тем жиже масло при низкой температуре, и тем меньше изменяются вязкостные характеристики трансмиссионного масла при высокой температуре. Чтобы обеспечить холодный пуск двигателя (проворачивание коленвала стартером и прокачивание масла по системе смазки) при низких температурах, вязкость трансмиссионного масла не должна быть очень большой. При высоких температурах, наоборот, масло не должно иметь очень малую вязкость, чтобы создавать прочную масляную пленку между трущимися деталями и необходимое давление в системе.

Исходя из этого, для каждого отдельно взятого двигателя производитель определяет компромиссные оптимальные параметры моторного масла. Именно эти параметры, как считает производитель мотора, должны обеспечить максимальный коэффициент полезного действия (КПД) при минимальном износе внутренних деталей мотора при заданных «типичных» условиях эксплуатации.

Увидеть показатель индекса вязкости масла можно в характеристиках трансмиссионного масла, который указывается самим производителем.

Типы трансмиссионных масел

На этикетке после аббревиатуры SAE мы видим несколько чисел, разделенных буквой W и тире, например 5W-30 (для всесезонного масла, которое, как правило и используют все автолюбители). Не вдаваясь в сложную терминологию, расшифровать эти надписи по типам трансмиссионных масел можно так:

5W – это низкотемпературная вязкость, которая означает, что холодный запуск двигателя возможен при температуре не ниже -35° С (т.е. от цифры перед W нужно отнять 40). Это та минимальная температура этого масла, при которой масляный насос двигателя сможет прокачать автомобильное масло по системе, не допустив при этом сухого трения внутренних деталей. На работу прогретого двигателя этот параметр никак не влияет.

Больше первая цифра перед W ровным счетом ничего не означает, и на работу прогретого двигателя никак не влияет. Поэтому если Вы живете в регионе, где температура воздуха зимой редко опускается ниже -20°С – Вам по данному параметру подойдет практически любое масло из продающихся на рынке. Другой вопрос, в каком состоянии Ваши стартер и аккумулятор, если они уже слегка подуставшие, им безусловно легче будет завести мотор при -20°С на масле 0W-30, чем если это будет 15W-40.

Второе число в обозначении – высокотемпературная вязкость (в данном случае это 30). Его нельзя так просто, как первое, перевести на понятный автолюбителю язык, так как это сборный показатель, указывающий на минимальную и максимальную вязкость масла при рабочих температурах 100-150°С. Чем больше это число, тем выше вязкость моторного масла при высоких температурах. Хорошо это, или плохо именно для Вашего мотора – знает только производитель автомобиля.

Дополнительно заметим, масла, в зависимости от вязкостных свойств, используются при зимней и летней эксплуатации. Использование зимой летних сортов масел ведет к дополнительному расходу топлива до 8%; использование зимних масел летом — к повышенному износу двигателя, увеличению расхода масла на угар.

 От значения вязкости зависит прокачиваемость по масляной системе, отвод тепла от трущихся поверхностей, их чистота. Это обеспечивает масло с меньшей вязкостью. Для уплотнения зазоров в изношенных двигателях при работе с повышенными давлениями требуются масла с более высокой вязкостью.

Качественными маслами являются те, которые имеют небольшую вязкость при отрицательных температурах и обеспечивают хорошую текучесть, минимальные пусковые износы, а при рабочих температурах имеют высокую вязкость (то есть вязкость остается стабильной независимо от температуры) и хорошие смазочные свойства.

1ak.by

Классификация трансмиссионных масел ― БигТех

Трансмиссионное масло предназначено для применения в узлах трения агрегатов трансмиссий, а также в различных редукторах и червячных передачах. Состоит из базового масла (минерального, полусинтетического или полностью синтетического) с добавлением различных, функциональных присадок. Трансмиссионное масло на синтетической основе имеет наиболее высокий уровень химической стабильности, в пределах заданного класса вязкости в течении всего срока службы и обеспечивает большую несущую способность.Главной функцией трансмиссионного масла является снижение износа деталей механических передач. Благодаря противоизносным и противозадирным свойствам масла предотвращается появления задиров и повреждений на поверхностях трения.Трансмиссионные масла подвергаются высокому контактному давлению (более 3000 МПа) одновременно со скоростью сдвига в сопряженных поверхностях до 25 м/с, рабочим температурам до 150°С, а в зонах контакта до 350°С, сохраняя масляную «прокладку» в местах трения. Для обеспечения устойчивости к воздействию сверхвысоких давлений смазочные масла должны обладать высокой вязкостью, обеспечивающей образование граничного слоя, препятствующего непосредственному контакту трущихся деталей. С увеличением вязкости масла, возрастает нагрузочная способность защитной масляной пленки, предотвращая сухое трение деталей. Однако растут и энергетические потери на преодоление сопротивления вязкости масла. С другой стороны, что бы обеспечить надежное смазывание трансмиссии, при отрицательных температурах трансмиссионное масло должно быть достаточно текучим.В дополнительной информации к маслу содержатся данные о параметрах кинематической вязкости при рабочих температурах 40°С, и 100°С, а так же значение индекса вязкости.Индекс вязкости - эмпирическое число, которое указывает на степень изменения вязкости масла при изменении температуры. Масла с высоким индексом вязкости проявляют меньшую зависимость вязкости от температуры, чем выше значение индекса, тем меньше изменяется вязкость. Высокий индекс вязкости имеют масла на синтетической основе.При выборе вязкостно-температурных характеристик масла руководствуйтесь рекомендациями производителя данного автомобиля и учитывайте климатические и эксплутационные условия.Для снижения износа высоконагруженных механических передач применяются эффективные противоизносные и противозадирные присадки (ЕР).

Основные классификации Трансмиссионных масел:

SAE - Характеризует вязкость и определяет диапазон температуры окружающей среды, при котором масло обеспечит надежную работу трансмиссии. Зимние классы обозначаются - 75W, 80W, …, летние - 90, 140,… Всесезонные масла обозначают сдвоенным номером, первые две цифры соответствуют зимнему классу, а следующие две летнему, например: 75W90, 80W90, и т.п. Маркировка LS – масло для самоблокирующихся дифференциалов типа LS (Limited Slip).В данной таблице представлено примерное соответствие индекса SAE диапазону температуры окружающей среды.

Индекс SAE Применение при t ℃ окружающей среды
70W-9075W-9080W-9085W-9085W-14075W-140 −55°C…+25°C−40°C…+35°C−25°C…+35°C-12°C…+40°C−12°C…+45°C−35°C…+45°C

API – характеризует масло по области применения

Класс API Область и условия применения
GL-1Цилиндрические, червячные и спирально-конические зубчатые передачи в условиях низких скоростей и нагрузок. Минеральные масла без присадок или с антиокислительными, противоизносными и противопенными присадками без противозадирных компонентов
GL-2Червяные передачи, работающие в условиях GL-1, но с более высокими требованиями к антифрикционным свойствам. Могут содержать антифрикционный компонент.
GL-3Обычные трансмиссии со спирально-коническими шестернями, работающие в умеренно жестких условиях по скоростям и нагрузкам. Обладают лучшими противоизносными и противозадирными свойствами, чем GL-2.
GL-4Автомобильные трансмиссии с гипоидной передачей, работающие в условиях больших скоростей при малых крутящих моментах и малых скоростей при высоких крутящих моментах. Обязательно наличие высокоэффективных противозадирных присадок
GL-5Автомобильные гипоидные передачи, работающие в условиях больших скоростей и малых крутящих моментов, при действии ударных нагрузок на зубья шестерен - при высоких скоростях скольжения. Должны содержать большое количество серофосфоросодержащей противозадирной присадки.
GL-6Автомобильные гипоидные передачи с повышенным вертикальным смещением осей шестерен, т.е. работающие при повышенных скоростях, ударных нагрузках и высоких крутящих моментах. Содержат большее количество серофосфоросодержащей противозадирной присадки, чем масла GL-5.
МT-1 Несинхронизированные механические передачи, используемые в автобусах и тяжелонагруженных грузовиках. Не предназначены для использования в синхронизированных передачах и автоматических коробках передач легковых и тяженагруженных автомобилей. Имеют преимущества над категорией GL-5 по термической и высокотемпературной стабильности, совместимости с материалами уплотнений и моющими свойствами.

Военные спецификации США

MIL-L-2105 В - наиболее употребляемые в настоящее время технические условия на трансмиссионные масла для гипоидных передач,сравнимы с API GL-5.MIL-L-2105 С - действующие с 1976 г. технические условия для всесезонных трансмиссионных масел классов вязкости 75W, 80W/90 и 85W/140. Они превосходят спецификацию MIL-L-2105 В и соответствуют API GL-5.MIL-L-2105 D- следующая по классу спецификация, превосходящая предыдущие, для современных масел.

Масло для автоматических и полуавтоматических коробок передач

АКПП имеет гидротрансформатор, шестеренчатую коробку передач, сложную систему электронного управления. Для АКПП применяется специальная жидкость (масло)- ATF (Automatic Transmission Fluid), которая смазывает, охлаждает, передает крутящий момент и обеспечивает фрикционное сцепление.Масла для АКПП окашивают, как правило, в красный цвет.Основными разработчиками стандартов на масла для автоматических трансмиссий являются корпорации "General Motors" (GM) и "Ford" . Европейские и японские производители автомобильной техники, руководствуются спецификациями этих корпораций. DEXRON - торговая марка корпорации General Motors (GM).MERCON - торговая марка корпорации Ford Motor CompanyATF+3 - торговая марка корпорации Chrysler.GM имеет спецификации - Dexron IID, Dexron IIE, Dexron III и Dexron IV . Спецификации Dexron III и Dexron IV созданы с учетом требований к маслам для электронно-контролируемого сцепления, а также разработана спецификация Allison C-4, определяющая требования к маслам, работающим в тяжелых условиях эксплуатации в грузовых автомобилях, внедорожной и строительной техники.Dexron III, для машин выпуска после 1993 г., в состав масла введен модификатор, понижающий трение. Dexron III, замещает Dexron IID и Dexron IIE, если в механизме допускается снижение коэффициента трения.Dexron IIE замещает Dexron IID, обратная замена не допускается. Dexron IV, – Новая разработка масла на синтетической основе. Имеет продленные интервалы замены, повышенную стабильность к окислению, оптимальные антифрикционные свойства, улучшенную передачу крутящего момента, сохранение постоянной вязкости, исключительную текучесть при отрицательных температурах. Рекомендовано к использованию в автомобилях с 2006 г. выпуска, где применялся Dexron III. Заменяет Dexron IIE, Dexron III.Масла со спецификаций Dexron II, III и Mercon, как правило, взаимозаменяемы.

Система классификации ZF

«ZF».< является одной из крупнейших компаний в Европе по производству коробок передач и силовых агрегатов транспортных средств. Компания создала систему классификации всех видов автотранспортных передач.

Смазочные материалы ZF Назначение (узлы и агрегаты)
ZF TE-ML 01Механические не синхронизированные коробки передач с шестернями постоянного зацепления (коммерческие автомобили)
ZF TE-ML 02Механические и автоматические трансмиссии грузовых автомобилей и автобусов
ZF TE-ML 03Коробки передач с гидротрансформаторами для внедорожной мобильной техники (строительная и специальная техника, автопогрузчики)
ZF TE-ML 04Судовые трансмиссии
ZF TE-ML 05Ведущие мосты внедорожной мобильной техники
ZF TE-ML 06Трансмиссия и гидравлические навесные системы тракторов
ZF TE-ML 07Передачи с гидростатическим и механическим приводом, системы с электроприводом
ZF TE-ML 08Системы рулевого управления (без гидроусилителя) легковых и грузовых автомобилей, автобусов и внедорожной мобильной техники
ZF TE-ML 09Системы рулевого управления (с гидроусилителем и маслонасосом) легковых и грузовых автомобилей, автобусов и внедорожной мобильной техники
ZF TE-ML 10Коробки передач типа Transmatic для легковых и коммерческих транспортных средств
ZF TE-ML 11Судовые трансмиссиМеханические и автоматические трансмиссии легковых автомобилей
ZF TE-ML 12Ведущие мосты легковых автомобилей, коммерческих транспортных средств и автобусов
ZF TE-ML 13Агрегаты ZF в транспортных средствах специального назначения
ZF TE-ML 14Автоматические трансмиссии коммерческих транспортных средств
ZF TE-ML 15Тормозные системы транспортных средств специального назначения

bigteh.ru

Какой бывает вязкость у трансмиссионного масла?

Трансмиссионное масло – это жидкость, применяемая для смазывания коробок передач, редукторов, колёсных мостов и др. Данное автомасло создаёт надёжную смазывающую пленку, выдерживающую высокие нагрузки в узлах трения. Качественная трансмиссионная жидкость должна отводить лишнее тепло, не вспениваться, снижать энергозатраты и др. Трансмиссионное масло должно иметь оптимальный уровень вязкости. Рассмотрим основные особенности подбора масла с нужной вязкостью.

Важность вязкости трансмиссионного масла

Вязкость трансмиссионного масла является одним из его ключевых параметров. Она имеет решающее значение для бесперебойного функционирования механизмов трансмиссии. Вязкость зависит от температурных условий эксплуатация автомобиля.

Более высокая вязкость способствует увеличению прочности масляной плёнки, что актуально при высоких температурах эксплуатации. Но при этом увеличиваются энергозатраты на внутреннее трение в масле. При низкой вязкости всё происходит с точностью до наоборот. Низкая вязкость масла при минусовых температурах определяет высокие пусковые свойства автомобиля.

Правильный выбор вязкости значительно увеличивает долговечность элементов трансмиссии. При оптимальной вязкости повышается КПД трансмиссии, уменьшается расход топлива и улучшается низкотемпературный пуск. При выборе вязкости нужно руководствоваться рекомендациям производителя автомобиля.

Индекс вязкости

Особенное внимание следует уделить индексу вязкости (ИВ), который определяет температурно-вязкостные свойства масла. Он должен быть достаточно высоким. Высоким индексом вязкости отличаются синтетические трансмиссионные масла известных брендов: Total, Elf, Shell, Лукойл, Castrol, Mobil, G-Energy, ZIC, Газпромнефть, Liqui Moly, Idemitsu, General Motors, Nissan, Mitsubishi и другие.

Для повышения индекса вязкости смазок используются специальные вязкостные (загущающие) присадки. Они позволяют получать смазки с хорошими низкотемпературными параметрами. В качестве вязкостных присадок обычно применяются разные полимеры и сополимеры.

Основы масел и вязкость

В зависимости от своей основы трансмиссионные масла бывают следующих видов:

  • Минеральные. Их получают посредством переработки нефти. Они отличаются низкой стоимостью, однако имеют ограниченные температурно-вязкостные свойства.
  • Полусинтетические. Сочетают в себе свойства минеральных и синтетических масел. По сравнению с минеральными маслами характеризуются повышенным индексом вязкости.
  • Синтетические. Это масла, производимые на основе химического синтеза. Отличаются наилучшими температурно-вязкостными характеристиками. Благодаря этому они широко используются при сложных условиях эксплуатации автомобиля.

Виды вязкости

Существует два основных вида вязкости.

  • Динамическая (абсолютная) вязкость. Характеризует сопротивляемость жидкости сдвигу. Используется для определения низкотемпературных свойств смазок. Единица измерения – паскаль-секунды (Па?с) или пуаз (П, Р). Для её измерения пользуются ротационными вискозиметрами.
  • Кинематическая вязкость. Является отношением динамической вязкости к плотности жидкости. Определяет высокотемпературную текучесть масел. Единица измерения – стокс (Ст) или квадратный миллиметр на секунду (мм2/с). Измеряется посредством капиллярных вискозиметров. 

Классификация трансмиссионных масел по вязкости

Сегодня для определения вязкости трансмиссионных смазок используется американская система SAE J306. В соответствии с ней трансмиссионные смазки бывают таких сортов:

  • зимние: 70W-85W;
  • летние: SAE 80-250. 

Существуют также всесезонные масла, к примеру, SAE 85W-90. Являются наиболее популярными у потребителей и могут успешно использоваться как летом, так и зимой.

Классификация SAE определяется параметрами низкотемпературной и высокотемпературной вязкости. Для их оценки применяются определенные методики:

  • низкотемпературная вязкость – выявление температуры, когда вязкость масла по Брукфильду достигает показателя 150000 сР;
  • высокотемпературная вязкость – определение показателя кинематической вязкости смазки при температуре 100° С.

Для отечественной классификации используется ГОСТ 17479.2-85. Согласно параметру кинематической вязкости при 100 °С различают следующие классы трансмиссионных смазок: 9, 12, 18, 34.

В заключение необходимо отметить, что к подбору вязкости следует относиться очень ответственно. От неё во многом зависит, насколько удачно будет действовать трансмиссионное масло в определенных условиях эксплуатации. Если характеристики вязкости выбраны неправильно, это может привести к ухудшению функционирования элементов коробки передач и сцепления или даже к их выходу из строя.

maslab.ru

Трансмиссионные масла. Часть III

www.expert-oil.com


Смотрите также

  • Трансмиссионное масло тм 5
  • Трансмиссионное масло петро канада
  • Трансмиссионное масло нива шевроле
  • Масло трансмиссионное gl 5
  • 75W80 расшифровка трансмиссионного масла
  • Трансмиссионное масло на акцент
  • Логан масло трансмиссионное
  • Трансмиссионное масло dexron
  • Сколько трансмиссионного масла
  • Масло трансмиссионное феби
  • Масло srs трансмиссионное

04.08.2012Трансмиссионные масла. Часть III

6. Трансмиссионные масла для индустриальных зубчатых передач

С точки зрения производителей смазочных материалов, трансмиссионные масла для индустриальных зубчатых передач отличаются от автомобильных трансмиссионных масел большим многообразием и большим числом комбинаций типов и размеров зубчатых передач (см. рис. 5, трансмиссионные масла часть 1). Главным образом следует напомнить о червячных передачах, планетарных передачах, геликоидальных косозубых и цилиндрических прямозубых передачах с перекрестными осями. Индустриальные зубчатые переда- чи также отличаются от автомобильных трансмиссий большим многообразием возможных условий эксплуатации и рабочих условий. Они отличаются намного более высоким крутящим моментом и характеристиками, связанными с явно большими размерами кожухов. Вместе с тем большие размеры зубчатых передач предполагают большие объемы смазочных материалов. Учитывая условия эксплуатации индустриальных зубчатых передач, сроки службы смазочных масел для них, несомненно, должны быть выше, чем для автомобильных трансмиссий (см. рис. 3).      За редким исключением масла, применяемые для индустриальных трансмиссий, слабо легированы и представляют собой смазочные материалы с невысокими по сроку службы характеристиками. По сравнению с автомобильными трансмиссионными маслами комплекс требований, которому одновременно отвечают индустриальные жидкости, меньше. Потребитель индустриальных трансмиссионных масел обязан регулярно и пунктуально выполнять инструкции и рекомендации производителя зубчатых передач по срокам смены трансмиссионного масла, соблюдая при этом требования по совместимости отработанного масла с окружающей средой.      В отличие от автомобильных зубчатых передач, смазка индустриальных трансмиссий может также различаться по типу. Автомобильные трансмиссии оснащены системой погружения в масло или впрыска. В зависимости от условий эксплуатации индустриальные трансмиссии смазывают вручную (капельницей или наливом), в картере, масляным туманом или впрыскиванием масла. Часто встречаются крупные смазочные системы, например печатные станки или бумагоделательные машины, заправляемые несколькими сотнями литров смазочного масла. На рис.24 дано схематическое представление о смазочных системах, чаще всего применяемых в настоящее время.  

     При смазке с помощью смазочной системы общий объем масла не должен быть слишком маленьким для обеспечения деаэрации масла. В этом отношении очень важную роль играют деаэрирующие свойства и склонность масла к пенообразованию, потому что воздух — плохой смазочный материал. Чистота смазочного масла, работающего в системе, является одним из центральных факторов, обеспечивающих долговечность зубчатых передач, следовательно, фильтрация и фильтруемость масла имеют немаловажное значение.      Кроме того, необходимо также точно учитывать зависимость прокачиваемости масла от его вязкости, особенно при холодных температурах и во время пуска таких систем. Неправильный выбор вязкости может привести к отказу всей системы. Нет сомнения в том, что различные смазочные масла для индустриальных трансмиссий должны отвечать максимально возможным техническим требованиям. Кроме того, они также должны отвечать конкретным требованиям системы: стремлению владельцев оборудования к увеличению интервалов между сменой масла. В сравнении с маслами для автомобильных трансмиссий число спецификаций на индустриальные трансмиссионные масла, разработанных в мире, довольно мало. Важные спецификации, опубликованные производителями и конечными пользователями зубчатых передач, перечислены в табл. 14

 

 API  GL-2
 АМАA  520 Part 6,7
 АМАA  520 Part 9
 AGMA  9005-E02
 AGMA  250.04,251.02
 David Brown  S1.53101
 US Steel  224
 Cincinnati Milicron  P-47, 50, 53, 63, 74
 GM  LS2 Part 1,2, 3,4
 Rockwell International  0-76
 DIN  51517
 Flender  Sheet A
 Winergy  02.05.2003

     Эти спецификации охватывают как простые динамико-механические методы испытания и тестеры общих компонентов, так и стандартные методы испытаний с роликовыми подшипниками и зубчатыми передачами. Наряду с этими спецификациями, применяемыми во всем мире, многие производители трансмиссий издают свои собственные, более сложные спецификации, с более жесткими требованиями к смазочным маслам для своих индустриальных зубчатых передач.      Большинство этих спецификаций включают строгие ограничения в физикохимических и механико-динамических стандартных методах испытания. В большинстве случаев требуется детальная информация об описанных ниже свойствах смазочных масел.

6.1. Вязкостно-температурные характеристики

По окружающим эксплуатационным условиям необходимые вязкостно-температурные характеристики предполагают соответствие очень высоким требованиям. Большое значение имеет диапазон вязкости базового масла. Во всем мире масла для индустриальных трансмиссий подлежат маркировке с указанием ISO класса вязкости. В американском регионе чаще применяют классификацию AGMA.      Индекс вязкости (ИВ) — безразмерный показатель, характеризующий изменения вязкости жидкостей в зависимости от изменения температуры. Чем выше индекс, тем меньше изменение вязкости при изменении температуры. Несмотря на то, что жидкости становятся менее вязкими по мере повышения температуры, вязкость жидкости с более высоким ИВ изменяется в меньшей степени, чем вязкость масла с более низким ИВ. Эта стойкость вязкости к изменениям температуры имеет важные последствия в реальной жизни. Жидкость с высоким ИВ может использоваться всесезонно. Высокоиндексная жидкость позволяет работать при более низких температурах, исключая неплановые простои из-за перегрева: она также позволяет эффективно и бесперебойно работать при высоких температурах и обеспечивает легкий низкотемпературный запуск. Это увеличивает температурный диапазон эксплуатации трансмиссий. Высокоиндексные жидкости обладают лучшими низкотемпературными свойствами, чем стандартные трансмиссионные гидравлические жидкости. Это означает, что при низких температурах жидкость данного класса вязкости (ISO VG) будет иметь вязкость, аналогичную вязкости жидкости более низкого класса. Подбором этих характеристик можно идентифицировать жидкость, отвечающую требованиям, предъявляемым к высокоиндексным (всесезонным) маслам.

6.2. Стойкость жидкости к сдвигу

Еще одним важным аспектом, характеризующим трансмиссионные масла, является стабильность вязкости и ИВ в условиях эксплуатации. Жидкости могут быть получены на базе высокоиндексных масел (например, дорогостоящих синтетических масел) и/или путем введения полимеров, которые называют присадками, улучшающими индекс вязкости (VII), в композицию. VII (Viscosity index improver - присадки, улучшающие индекс вязкости) — хорошо изученная и широко применяемая технология, впервые внедренная для производства всесезонных масел в 40-х гг. прошлого столетия. Она находит применение для этих целей до настоящего времени для производства высокоиндексных масел и множества других смазочных материалов, например трансмиссионных жидкостей, трансмиссионных масел и гидравлических жидкостей. Современные зубчатые передачи и гидравлические системы передают большие усилия на применяемые в них жидкости. Базовое масло и большинство присадок не испытывают воздействий этих сил, но при некоторых обстоятельствах этому воздействий могут подвергаться вязкостные присадки (VII). В худшем случае силы сдвига разрывают VII на мелкие кусочки, что приводит к снижению вязкости и ИВ жидкости. Следовательно, преимущества высокоиндексной жидкости могут быть утрачены в процессе эксплуатации.      Современные VII обладают стойкостью к сдвигу, так как они низкомолекулярны и выпускаются в промышленных масштабах, так что эту проблему можно считать решенной.

6.3. Защита от коррозии и ржавления

Коррозия и защита от нее играют очень важную роль для смазочных материалов, применяемых в индустриальных трансмиссиях. С учетом требуемых удлиненных сроков смены индустриальных трансмиссионных масел, сильная коррозия может привести к неожиданно скорому отказу подшипников, зубчатых передач и других важных компонентов трансмиссий. Поэтому современные спецификации предусматривают проведение различных испытаний для определения антикоррозионных свойств смазочных масел для трущихся пар железо—сталь, медь и другие цветные металлы. Некоторые области применения индустриальных масел, например в трансмиссиях, работающих в прибрежном шельфе, усложняются из-за присутствия морской воды в зубчатых передачах. Поэтому требуются специальные методы испытания.

6.4. Окислительная стабильность

Окислительная стабильность снижает старение масла. Старение смазочного масла связано с изменением вязкости и с повышением кислотного числа. С помощью некоторых методов испытания можно определить характеристики старения масла путем изменения кислотного числа. Кислотное число служит для определения того, сколько миллиграммов щелочи (КОН) требуется для нейтрализации одного грамма кислоты, содержащейся в масле. В настоящее время чувствительные зубчатые передачи испытываются на регулярной основе. В случае заметного изменения кислотного числа производители смазочных масел рекомендуют сменить масло.

6.5. Температура вспышки и температура застывания

Температура вспышки — это самая низкая температура, при которой объемы паров еще выделяются из испытуемого образца в определенных условиях до такой степени, что над уровнем жидкости совместно с воздухом они образуют воспламеняемую смесь. Низкая температура вспышки масла приводит к крупным потерям на испарение в зависимости от локальных температур масла. Температура застывания идентична температуре, которая на 3 °К выше температуры, при которой жидкость утрачивает текучесть в условиях испытаний. В зависимости от области применения почти во всех спецификациях предусматривается определение температур вспышки и застывания.

6.6. Деэмульгируемость и водоотделение

Вода — плохой смазочный материал, усиливающий коррозию, поэтому ее следует хранить вдали от масла. Однако часто бывает невозможно предотвратить попадание воды в масло. Если содержание воды в масле превышает определенные пределы, остается единственная возможность — слить масло или разделить его на масляную и водную фазы. В крупных смазочных системах вода выпадает на дно масляного бака благодаря более высокому удельному весу, и ее можно слить через спускной кран. Для этого, однако, требуется хорошая водоотделяющая способность смазочного масла.

6.7. Деаэрация

Вполне естественно, воздух смешивается с маслом в каждой зубчатой передаче. Поскольку воздух также является плохим проводником тепла, он должен быть удален из масла как можно быстрее для минимизации его содержания в масле.

6.8. Совместимость с красителями

В целях защиты от коррозии и увеличения срока службы на внутренние устройства крупных индустриальных коробок передач наносят краску, причем на эту краску масло может воздействовать агрессивно, что способно привести к ее размягчению и отслаиванию. Это относится к однокомпонентным красителям, тогда как двухкомпонентные красители, как правило, стойки к полигликолям.

6.9. Совместимость с уплотнениями

Аналогично красителям уплотнения могут содержать органические компоненты, которые могут быть подвергнуты агрессивному воздействию со стороны смазочных масел. Испытания на совместимость эластомеров со смазочными маслами включает важные спецификации, потому что риск несовместимости значительно возрастает по мере повышения температуры масла. Испытания на совместимость смазочных масел с уплотнениями подразделяются на статические и динамические в зависимости от условий проведения, однако детальное рассмотрение этих методов испытания выходит за рамки данной статьи.

6.10. Вспенивание

Пенообразование в смазочных материалах частично связано с присутствием в них загрязняющих примесей. Масштабы пенообразования могут быть настолько значительными, что пена в результате вентиляции выносится из трансмиссии и загрязняет окружающую среду. Во избежание этого в коробках передач следует использовать только такие масла, которые в свежем состоянии обладают хорошей стойкостью к вспениванию.

6.11. Смешиваемость с минеральными маслами

По возможности не следует смешивать различные базовые масла, применяемые в индустриальных трансмиссиях, так как следует ожидать, что в смеси проявятся свойства самого худшего компонента. Однако более критическим фактором является не простое физическое смешивание, а тот факт, что смешение двух базовых масел приводит к неожиданным химическим реакциям. Например, случайное смешение минеральных масел с полигликолями приводит к значительному увеличению вязкости в результате полимеризации, что затрудняет прокачивание смеси через трубки малого сочетания и в конечном счете может привести к отказу трансмиссии изза недостаточной смазки.

6.12. Совместимость с окружающей средой и с кожным покровом

В настоящее время особенно большое значение придают совместимости трансмиссионных масел с окружающей средой и с кожными покровами в связи с растущей озабоченностью, имеющейся на этот счет у производителей трансмиссий и предприятий-потребителей, воздействием на окружающую среду и здоровье обслуживающего персонала. Многочисленные спецификации требуют проведения испытаний масел на совместимость, причем эти испытания в каждом конкретном случае могут быть дорогостоящими и капиталоемкими из-за воздействия на здоровье и окружающую среду.

6.13. Открытые зубчатые передачи

Открытые зубчатые передачи, так называемые мельничные (фрезерные), часто встречаются в цементной промышленности, во вращающихся печах в сталелитейной промышленности, на электростанциях, работающих на угле или на открытых угольных разрезах. Эти открытые крупногабаритные зубчатые передачи часто смазывают разбрызгиваемым адгезионным смазочным маслом. Наряду с требованиями к несущей способности и противоизносным свойствам, приоритетное значение имеют адгезионные свойства, разбрызгиваемость, прокачиваемость и антикоррозионные свойства этих масел. В упомянутых системах успешно применяют так называемые твердые компаундированные смазочные материалы в качестве добавок к таким адгезионным маслам. По соображениям минимизации вредного воздействия на здоровье и окружающую среду, а также из-за прямых потерь масла с отработанным воздухом, применение систем смазки разбрызгиванием масла и масляным туманом в настоящее время используется с ограничением. Открытые зубчатые передачи можно смазывать вручную или с помощью дозировочных насосов с регулярными интервалами высоковязкими маслами.

7. Отношение «затраты/прибыль» при разработке трансмиссионных смазочных масел

С самого начала разработка и выбор компонентов фокусировались на экономии затрат и на эффективно затратном проектировании. Цель исследования, и оценка полученных результатов заключались в сравнении характеристик синтетических индустриальных трансмиссионных с обычными трансмиссионными маслами на базе минеральных масел, отвечающих требованиям CLR стандарта (DIN 51 517), в отношении окислительной стабильности (стойкости масла к старению) и фрикционных характеристик. Это в конечном итоге может значительно увеличить срок службы масла, потому что удлиненные интервалы между заменами масла коррелируют с намного более высоким уровнем механико-динамических характеристик. В табл. 15 приведены примеры индустриальных трансмиссионных масел, полученных на основе базовых жидкостей разных типов. Ожидаемые сроки службы трансмиссионных масел, в частности в отношении окислительной стабильности, могут быть сравнены методом испытания на окисление в ротационной бомбе.

 

 Тип жидкости

 CLP-M

CLP-PLUS

 CLP-PAO

CLP-PG

 CLP-E

 Тип жидкости  Минеральная  Синтетическая

Синтетическая биоразлагаемая

 Базовое масло жидкости Минеральное масло

 ПАО

 Полигликоли

Синтетический сложный эфир

 Вязкость при 40 °С, мм2/с

220

220

220

220

220

 Вязкость при 100 °С, мм2/с

18,4

18,4

25,7

34,7

28,0

Индекс вязкости

95

95

150

200

160

Температура вспышки,°С

230

230

260

230

280

Температура застывания,°С

– 18

– 18

– 54

– 33

– 48

Растворимость в воде

нет

нет

нет

частично

нет

Этот метод измеряет время, в течение которого расходуется кислород в трансмиссионном масле в автоклаве под давлением. Синтетическое масло с длительным сроком службы (со сливом масла в соответствии с фактором срока службы) обладает хорошей окислительной стабильностью. Сравнительные испытания показывают, что некоторые синтетические индустриальные трансмиссионные масла обладают намного более высокой окислительной стабильностью, чем продукты на базе минеральных масел (рис. 25).

     Метод испытания на микропиттинг применяется для оценки качества защиты поверхностей ножек зубьев от микропиттинга, обеспечиваемого синтетическими маслами (рис. 26). Этот метод имитирует практические условия при умеренных скоростях скольжения в зоне зацепления, применимые ко всем типам зубчатых передач (см. рис. 5, Трансмиссионные масла, часть I).

Синтетические трансмиссионные масла обладают противоизносными свойствами в коробках передач и в роликовых подшипниках. Функциональный крутящий момент трансмиссионных масел, измеренный по методу FAG на роликоподшипниковом аппарате FE8, показан на рис. 27.

Благодаря своим базовым жидкостям синтетические масла с оптимизированными присадками обладают огромным потенциалом предотвращения задиров и снижения трения и вследствие этого снижают температуру в маслосборнике на 30 °С. Это стало известно при проведении тестов на испытательном FZG стенде с применением усиленного метода испытания А/16.6/140 на противозадирные свойства. Результаты этих испытаний показаны на рис. 28.

     Результаты испытаний смазочных масел, в том числе «новейшие» методы испытаний, дают важную информацию о снижении трения в коробках передач и в роликовых подшипниках благодаря свойствам этих масел и подчеркивают их общие эксплуатационные характеристики. Этот уровень эксплуатационных характеристик синтетических жидкостей приводит к повышению мощности машин и оборудования и к улучшению производительности. По сравнению со стандартными минеральными маслами типов CLM-М и CLM-Plus цены на синтетические базовые жидкости типов CLP-PAO, CLP-E и CLP-PG в 3-5 раз выше. Но увеличенные сроки службы синтетических базовых масел компенсируют более высокую стоимость на эти продукты вдвое и снижают температуру масла в маслосборнике на 10—30 °С, снижая периодичность смены масел в 2—8 раз по сравнению с минеральными маслами. Все эти аспекты должны учитываться при оценке общего отношения «затраты/прибыль» в разработке и применении конкретного продукта. Поэтому более высокие затраты на синтетические трансмиссионные масла должны сопоставляться с экономией, достигаемой благодаря удлинению сроков службы (по сравнению с минеральными маслами) и снижению затрат на техническое обслуживание. Если все эти аспекты принимаются в расчет, то очевидно, что синтетические базовые жидкости способны значительно снижать общие затраты, связанные с системой смазки. Примеры приведены на рис. 29.

В реальных условиях применения целесообразно проведение анализа «затраты / прибыль» при рассмотрении превосходных характеристик синтетических трансмиссионных масел. Более высокая стоимость синтетических продуктов окупается экономией средств благодаря значительно более продолжительным интервалам между сменами масла (по сравнению с минеральными маслами) и общему снижению эксплуатационных затрат.

Роман Маслов.По материалам зарубежных изданий.

x
e30d609a